学年

教科

質問の種類

数学 高校生

この問題の解説の意味がわかりません 立式する過程での理由っていうものがよくわかんないので教えて欲しいです。

478 重要 例題 43 隣接 3 項間の漸化式 (3) | がり方の総数を an とする。 このとき, 数列{an} の一般項を求めよ。 この 指針 数列 {a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから,n≧3のとき! 九段にする の2つの方法がある。 このように考えて,まず隣接3項間の漸化式を導く。 作 を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, βが無理数を含む複雑な式となってしまう。計算をらく ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい。 α=1, a2=2である。 解答のとき,段の階段を上がる方法には,次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-1 [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2 =2 フィオ いて、 あ ある 新た ま ろ 月末 とな 漸イ こ {a か ① [1] 最後に1段上がる [2] 最後に2段上がる n FX 九段 a (n-1)段 ここまで an-1 通り (n-1) 段 | (n-2) 段 ここまで2通り よって an=an-1+an-2 (n≧3) (*) 和の法則(数学 この漸化式は,n+2=an+1+an (n≧1)... ①と同値である。(*)でカード x=x+1の2つの解をα, β (α<β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 2-(1-x)=(- an+2-(a+β)an+1+aban = 0 よって an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), az-Ba=2-β ②から ③から an+1-aan=(2-α)B-1 an+1- -βan=(2-β)an-1 ◆特性方程式 x2-x-1=00 x= 1±√5 ...... a=1, al ◄ar"-1 ④ こ ...... ⑤ α+1 を消去 ④ ⑤ から (B-α)an=(2-α)β"-1-(2-β)α7-1 1-√√5 a= 2 B=1+1/5 2 であるから B-a=√5 また,α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-B)=B+1=2 2-B=a² 同様にして よって、⑥から an= 1 1+√5 \n+1 1-√√5 2 雪 次の条件によって定め 3 α,βを値に直す 12-a, 2-8 は、α,Bの値を 代入してもよい ここでは計算を ている。

解決済み 回答数: 1
数学 高校生

次の青いところがよく分からないのですがで何故Fダッシュで割るのでしょうか?そもそも割っていいのでしょうか?どなたか解説お願いします🙇‍♂️

関数 f(x) = x + 3x2 + x-1 の区間 −2≦x≦1 における最大値と最小 値, およびそのときのxの値を求めよ。 思考プロセス 《 ReAction 関数の最大・最小は, 極値と端点での値を調べよ 例題219) 極値を求めるために f'(x) = 0 を考えると, f'(x) = 3x+6x+1=0 より x= -3 ±√√6 ← これをf(x) に代入するのは大変。 3 既知の問題に帰着 《ReAction 高次式に無理数を代入するときは, 2次式で割った余りに代入せよ 例題12) f'(x) = 3x+6x+1 f'(x) = 0 とおくと x= 3±√6 ★3x2 + 6x + 1 = 0 より 3 -3 ±√3°-31 ここで,2<√6 <3 であるから -3-√6 x= 3 -2< < 3 5 3' 1 -3+√6 -3±√6 < <0 3 3 3 よって, -2≦x≦1において, 増減表は次のようになる。 3±√6 x= が区間 3 -3-√6 -3+√6 x ·2 ... ... ... 1 3 3 に含まれるかどうか調べ る。 f'(x) + 0 0 + f(x) 1 極大 極小 74 12 例題! ここで f(x) = (3x+6x+1)( 1 4 4 -x+ XC 次数下げをする。 3 3 3 -3±√6 -3±√6 x= となる 3 x= のとき, f'(x) = 3x²+6x+1=0 より 3 のは -3-√6 3 3+√6 4 -3-√6 = 3 3 4 -3+√6 3 3 3 43 4-3 4√6 = 9 4√6 f'(x) =3x2+6x + 1 = 0 のときであるから, f(x) を3x + 6x+1で割った 余りを考える。 y 9 8|9 4√6 4 < より 9 3 3-√6 <f(1) = 4, 3 (-3+√6) <ƒ(-2)=1 -3+√6 3 したがって x=1のとき 最大値 4 -3+√6 x= 3 のとき 最小値 4√6 - 9 -2 -3-√6 3

解決済み 回答数: 1
数学 高校生

44の(2)です。解いてたら訳わからなくなってしまいました

(2) (p+1=) (=31)=8+71 +3+6=8+7V2 B-E-8-6-PA (3+a-7)12= 2-Pa P&ば有理数よりオカナム-7、ユーヤは確である。 には無理であるに ゆえにa+bv = 0 はa=b=0より Pa Spg -2 = 0 3p+-7=0 十分条件であるが, 必要条件ではない 必要条件でも十分条件でもない [類 センター試験) 39,404 42 次の各命題について, 正しい場合はそれを証明し, 正しくない場合は反例を あげよ。 ただし, a, b は整数とする。 (1) αが奇数かつが奇数ならば ^ +62 が偶数。 (2)'+'が偶数ならば, αが奇数かつが奇数。 (3) +62 が奇数ならば, αが奇数または6が奇数。 [類 法政大 ] 44 43 n は整数とする。 (1)が5の倍数ならば nは5の倍数であることを証明せよ。 (2) √5 が無理数であることを証明せよ。 +4=0 a=h= 44° (1) a,b,c,d を有理数 x を無理数とするとき、 「a+bx=c+dx ならば, a=c かつ b=d」 が成り立つことを証明せよ。 (2) (+√/2)(q+3√2) =8+7√2 を満たす有理数g(g) の値を求めよ H/NT 41 ) @〜④ について、条件p, q. (pまたはg)を満たすかどうか調べる。 (3) 対側を利用する。 (2) を利用する。 42 (1) a=2m+1.6=2n+1 (m.n は整数)とおき、ak+b mnを用いて表す (3) 対偶を利用する。 斉数だから 43 (1) 対側を利用する。 (2) (1) を利用する。 44 (2) (1) を利用する。

解決済み 回答数: 1
数学 高校生

ス、セなんですが、なぜ答えではこのような言い換えをしているのですか? 私はこの命題を満たすものを選べばいいと思ったので、⓪はすぐに消してしまいました。

〔2〕 正の実数aに関する次の三つの条件 Q, rを考える。 α は無理数である 1 g:a+ は無理数である。 9 a r:2+1/2 は無理数である なお,必要ならば,2,3が無理数であることを用いてもよい。 (1) 命題 「pg」 の反例であるものは D シ である。 命題 「pr」 の反例でないものは ス である。 シ の解答群 ス と の解答の順序は問わない。) a=1 ① a=√2 ?a= √3 ③ a=1+√2 ④ a=2+√2 ⑤ a=2+√3 (2)はgであるための ソ。 〔2〕 条件. Q.の否定をそれぞれ, Q. です。 (1)各選択肢のα.a+1,123の値は、次の表の通りである。 a a' 0 1 √2 (有理数)(無理数) √√3 1+√2 (無理数) 3√2 43 2 (無理数)(無理数) 2012の計算は、 3) とよい。 2+√2 2+√3 (無理数) a+1 2 a (有理数) 4 (有理数) 2 10 3 6 (無理数) 15+62 (有理数) (有理数)(有理数) 命題 「q」の反例は,かつ,すなわち (有理数) 2 (無理数) 14 (有理数) 3 2√2 6+√2 (無理数)(無理数) (無理数) a 「αが無理数 かつ a+ - が有理数」を満たすものである。 これを満たすのは⑤ 命題 「pr」 の反例でないものは、 またはr. すなわち 「αが有理数または+1/3が無理数」を満たすものである。 これを満たすのは^⑩⑩ (または 0, 0) (2) 命題 「rg」は真である。 (証明) 対偶」 が真であることを示す。 正の実数aに対して,a+1/2=x =xが有理数であるとすると、 a'+1=(a+1)-2=x2-2 も有理数である。 (1+√2)+ (1+√ 1+√2 =(2√2)^2=6 よって、 対偶 「!」 が真であるから,もとの命題 「r」も真である。 命題 「qr」は偽である。 (証明終) (2+√√2)+(2+ (2+√2+1 2+√ 19+6√22 15+6√2 (2+√3)+( (2+√3+2+ -42-2=14 √2. v23√2 2 2 は無理数であるが、 ソ の解答群 ⑩ 必要条件であるが, 十分条件ではない ① 十分条件であるが, 必要条件ではない (2) 必要十分条件である 必要条件でも十分条件でもない (数学Ⅰ 数学A第1問は10ページに続く。) L D (√2)+(v/zy=2+1/2=1/27は有理数であるから,a=√2 は反例である。 ゆえに は q であるための十分条件であるが, 必要条件ではない。(①) (参考)表中の1+√2 2+√2, 2+√3 などが無理数であることは,√2 √3 が無理数であることを用いて証明することができる。 例えば、 1+√2 が無理数であることは、次のように証明できる。 (証明) 1+√2 が有理数であると仮定すると, 有理数xを用いて 1+√2=x と表される。 このとき √2=x-1 右辺のx-1は有理数であるが, 左辺の2は無理数であるから, 矛盾 する。 したがって, 1+√2 は無理数である。 (証明終)

解決済み 回答数: 1