学年

教科

質問の種類

数学 高校生

こういう問題で、f(x)というものをよく見かけるのですが、これはどのような場合に用いるのでしょうか?解答をかくときに毎回意味が分からなかったので、教えてもらえると嬉しいです。

頻出 ★★☆☆ こを求めよ。 y=ax2+bx+6 105 絶対不等式 [1] 不等式の解の存在 ★★☆☆ (1) すべての実数xについて, 2次不等式+2kx-3k+4>0が成り立 つような定数kの値の範囲を求めよ。 Acid (2) 2次不等式 x-kx+k+3<0 を満たす実数x が存在するような定 数kの値の範囲を求めよ。 ReAction 不等式は,グラフと x 軸の位置関係を考えよ 例題98 3 x 4+ =ax2+bx+6 このプロセス 「条件の言い換え (1) すべてのxについて (1) (2) y= ⇒y= のグラフがx軸より上側にある。 とx軸の共有点は [ 3 (2)y= のグラフがx軸より下側にある 部分が存在する。 + a B 9 y= とx軸の共有点は 2次関数と2次不等式 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 V y=f(x) D<0 のグラフ ■, x軸と (1) f(x)=x2+2kx-3k +4 とおく。 - 0)で交 例題 93 すべての実数x について f(x)>0 が成り立つのは, y=f(x)のグラフがx軸と共有点をもたないときである。 よって, f(x) = 0 の判別式をDとすると D< 0 を満たす D ゆえに 1=k-(-3k+4)=k+3k-4 4 グラフ = (k+4)(k-1)0 軸と したがって -4<k<1 0) で交 (2) f(x)=x-kx+k+3 とおく。 f(x) <0 を満たす実数x が存在するのは,y=f(x)の 例題 グラフがx軸と異なる2点で交わるときである。 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 \y=f(x) 93 よって,f(x) = 0 の判別式をDとすると D> 0 たす ゆえに D=(-k)2-4(k+3)=k-4k-12 =(k+2)(k-6) > 0 したがって k<-2,6<h B) Point... 絶対不等式 A x D>0 例題 105 (1) では,与えられた不等式 x2+2kx-3k+40 から, 機械的に D> 0 とし てしまう誤りが多い。 3) 必ず「不等式の条件」 を 「グラフの条件」 に言い換えてから, 判別式の条件を考えるよ うにする。 105(1) すべての実数xについて, 2次不等式 x+kx+2k+50 が成り立つよ うな定数kの値の範囲を求めよ。 (2) 2次不等式 2x²-3kx+4k+2 <0 を満たす実数x が存在するような定数 んの値の範囲を求めよ。 191 p.220 問題105

解決済み 回答数: 1
数学 高校生

命題の証明のところなんですけど、意味がわかりません💦誰か教えてください🙏🙏🙏

DO 項 3 本例題 43 対偶を利用した命題の証明 79 00000 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (2)626 ならば 「| a +6|>1 または |a-b>3」 (1) x+y=2 ならば 「x≦1 または y≦1」 CHART & SOLUTION p.76 基本事項 6 対偶の利用 pomu 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。 そこで, 対偶が真であることを証明し、もとの命題も真である, と証明する。 条件 x または y≦1」 の否定は 「x>1 かつy>1」 (2)対偶が真であることの証明には、次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 2章 6 =0 #0 とされる。 「x>1 かつy>1」 ならば x+y= これを証明する。 x>1, y>1 から x+y> +1 すなわち x+y>2 よって, x+y≠2 であるから, 対偶は真である。 したがって,もとの命題も真である。 (2) 与えられた命題の対偶は 「α+ 6≦1 かつ a-b≦3」 ならば2+62<6 これを証明する。 |a+6|≦1, |a-b≦3 から (a+b)2≦12, (a-b)2≦32 (a+b)2+(a-b)2≦1+9 ←pg の対偶は gp ←x>ay>b ならば x+y>a+b (p.54 不等式の性質) A²=A² ->1 よって ゆえに よって 2a2+62) ≦10 a+b25 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + 625 と 5<6 から a2+62<6 ら選べ POINT 条件の否定条件, gの否定を,それぞれ,g で表す。 かつ または pまたはq かつ PnQ=PUQ PUQ=PnQ PRACTICE 43º 文字はすべて実数とする。 次の命題を, 対偶を利用して証明せよ。 (1)x+y>a ならば 「x>α-b または y>b」 (2)xについての方程式 ax+b=0がただ1つの解をもつならば α≠0 論理と集合

解決済み 回答数: 1