学年

教科

質問の種類

数学 高校生

112.2 記述これでも大丈夫ですか?

480 00000 基本例題112 互いに素に関する証明問題 (1) (1) nは自然数とする。n+3は6の倍数であり,n+1は8の倍数であるとき, n+9 は 24の倍数であることを証明せよ。 (2) 任意の自然数nに対して,連続する2つの自然数nとn+1は互いに素であ ることを証明せよ。 ATUNATI p.476 基本事項 ② 基本 111 重要 114 CFS CITAT 指針 (1) 次のことを利用して証明する。 a, b, kは整数とするとき a,bは互いに素で, ak が6の倍数であるならば,hは6の倍数である。 TRAXE SHES OU MOC! (2) 1 +1は互いに素⇔nとn+1の最大公約数は nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,b は互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは 【CHART A,Bが自然数のとき, AB=1 ならば A=B=1 求める。(間 解答 (1) n+3=6k,n+1=81 (k, lは自然数)と表される。 n+9=(n+3)+6=6k+6=6(+1) n+9=(n+1)+8=81+8=8(1+1)+ M=5A JES RAJS a,bは 11 ak = bl ならばんは6の倍数, 1はαの倍数 互いに素 ②2 aとbの最大公約数は 1 <<549° よって 6(k+1)=8(+1) すなわち 3(k+1)=(2+1) 3と4は互いに素であるから,k+1は4の倍数である。このとき,l+1は3の倍数 したがって,k+1=4m (mは自然数) と表される。 である。 したがって, ゆえに n+9=6(k+1)=6.4m=24m +1=3m と表されるから, したがって, n +9 は 24の倍数である。 n+9=8.3m=24m (2) nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,bは互いに素である自然数 と表される。 n = ga をn+1=gb に代入すると ga+1=gb すなわち g ( 6-α) = 1 g,a,bは自然数で,n<n+1より6-a>0であるから g g=1 (1) としてもよい。 KBT BOE-S) IS = よって, nとn+1の最大公約数は1であるから, nとn+1 (ST 8 は互いに素である。 )=(62. 注意 (2) の内容に関連した内容を,次ページの参考で扱っている。 BOSTOYEVS nは自然数とする。 n +5は7の倍数であり、 Ad>D An=ga, n+1=gb 積が1となる自然数は1だ けである。 08 S (()(A) n+7は5の倍数であるとき、

回答募集中 回答数: 0
数学 高校生

108.1 記述これでも大丈夫ですか??

Ad 474 00000 基本例題108 素数の問題 (2) , g, rp <g <r である素数とする。 等式r = g² -p を満たすか,q, r (1) nは自然数とする。n²+2n−24 が素数となるようなnをすべて求めよ。 [(2)類 同志社大) 組 (p, g, r) をすべて求めよ。 自分自身) だけである 指針▷ 素数の正の約数は 1 このことが問題解決のカギとなる。 なお,素数は2以上 (すなわち正)の整数である。 (1) n²+2n−24=(n-4)(n+6) これが素数となるには,n+6>0と より,カー4) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と, おのずとn-4=1に決まる。 奇偶= 目すると g-p=1 (2)等式を変形すると (g+p) (g-p=r g+p>g-p>0,r は素数であることに注 ここで, g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると, かの値が2に決まる。 奇奇=個 偶 =偶 偶 【CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6> 0 n²+2n−24が素数であるとき, ① から よって このとき n-4=1 ゆえに n=5 n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²-5 (1) また n-4<n+6 n-4>0 POINT (q+p)(q-p)=r 0 <p <g <rであるから rが素数であるから ② より gtp=r, g-p=1 gp=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) ■まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため, n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数)の }………(*) の確認だけでも十分である]。 (2) 0<g-p <g+p 2 整数の和(または差)が偶数 整数の和 (または差) が奇数⇔ IS } 素数は2以上の整数。 g, pのどちらか一方は2 となる。 2整数の偶奇は一致する 2 整数の偶奇は異なる KLASSIES IST 練習 (1) nは自然数とする。 次の式の値が素数となるようなn をすべて求めよ。 3 108 (ア) n²+6n-27

回答募集中 回答数: 0
数学 高校生

数B 標本の問題です。写真の問題で、私はこれを(n,0.4)の二項分布に従うと考え、⑴の平均もn×0.4=0.4nだと思ったのですがこれは何が間違っているのでしょうか。 また二項分布の平均、分散の公式はいつ使えるのでしょうか。明日がテストなので焦っています💦お答えいただける... 続きを読む

考え方 母集団から無作為に標本 X, X2,..,X, を抽出すると, 独立な確率変数X,X= X" のそれぞれの平均 E (X) と標準偏差 (X)は,母集団と一致する. **** 例題 B2.12 標本平均の平均・標準偏差 H ある都市での有権者のA政党支持率は40% である. この有権者の中か 1400 ら無作為にn人を抽出するとき、k番目の人がA政党支持者なら1を不 支持者なら0の値を対応させる確率変数をXとし, 標本平均をXとする。 (1) X の平均を求めよ. を否定するだけの根拠が得られなかった (2) X の標準偏差 (X) が0.04 以下となるためのnの最小値を求めよ. 解答(1) 母集団の確率分布は, A 政党支持なら1, 不 支持なら0でA政党支持率は40% より,右 のようになる. To. in X の平均は,E(X)=E (1 (Xi+X2+..+X) n よって,母平均は,m=1×0.4+0×0.6 = 0.4 より,E(X)=m=0.4 cus よって, E(X)= n (2) 母集団の標準偏差oは, 検定を行う=√(1²×0.4+0°×0.6) -m²=√0.4-0.4°=√0.24 家であり、標本平均 X の標準偏差は, 1 =- 008 Vn² √0.24 0.04 1 {E(X₁) + E(X₂) + ······+E(X₂)} n (X)=√(X) = V ( ²1 - (X₁ + X₂ + ... + X₂₁) $$__@@ _@_____ = √ √ 2 / (V(X) 2/2 (V(X) + V (X₂) +----+ V (X») } + V( N (m+m++m)=m=0.4 = = √ √ 12/23 (0² + 0 ² + したがって,(X)=1 確率変数 確率 √0.24 ... + 0 ² ) = "+") -√²-0 to n より 0.24 0.0016 √0.24 より nz 4=150 10 計 0.4 0.6 1 E(aX+bY) =aE(X) + bE (Y) E(X₁)=E(X₂)=··· ......=E(X)=m o=√E(X^)-{E(X) X1, X2, ....., Xn は 独立とみなしてよい. X, Yが独立のとき V (aX+bY) = aV (X) +6°V (Y) - ≧0.04 であるから、 TUISS よって, n の最小値は150

回答募集中 回答数: 0
数学 高校生

75.1 記述これでも大丈夫ですか??

416 LE 00000 基本例題 75 三角形の面積比 (1) △ABCの辺AB, AC 上に, それぞれ頂点と異なる点D, Eをとるとき A+AR AE が成り立つことを証明せよ。 AD.. AADE △ABC AB AC (2) △ABCの辺BC, CA, AB を3:2に内分する点をそれぞれD,E,F とす る。 △ABCと△DEF の面積の比を求めよ。 指針▷三角形の面積比は, p.410で考えたように等しいもの(高さか底辺)に注目する。 (1) まず, 補助線 CD を引く。 △ADEと△ADC では何が等しいか。 ! 1① 三角形の面積比 等高なら底辺の比等底なら高さの比....... (2)(1) を利用。 △DEF は, △ABCから3つの三角形を除いたものと考える。 11点で交わ 解答 (1)2点CDを結ぶ。 △ADEと△ADCは, 底辺をそれぞれ線分 AE, 線分 AC と △ADE AE みると,高さが等しいから ① AADC AC △ADCと△ABC は, 底辺をそれぞれ線分 AD, 線分 AB と AADC AD Ma みると, 高さが等しいから (2) △ABC AB ① ② の辺々を掛けると TRICA FORMAADE AADC AE AD したがって 練習 2 75 RAADE (2) (1)により ゆえに AADC BAS- △ABC AAFE AF AE AD AE AB AC △ABC AB AC ABDF BD BF ACED 三角形の1つの△ABC CA CB ここで 両辺を △ABC で割ると △DEF △ABC △ABC BC BA =1- =1- PGAIS-MA AABC AC AB(+0A)= MA3130 CE CD tra 353-53-5 2|52|52|5 32 △ABC △DEF=25:7 5 5 6 25 6 25 (a+A)s]s=+HA 18+CA= HS+CAA 80MAS-04 B 6 25 6 6 6 7 25 25 25 25 A ADEF=AABC-AAFE-ABDF-ACED 237872 D B F CEDOTO ASPID A 3 基本69 3 [(18+TA)S DA÷8/ D AAFE ABDF ACED * △ABC △ABC △ABCAAROC AL-QAPNY A 2 E JE SETIAA C △ABC の辺 BC を 2:3に内分する点をDとし,辺 CA を 1:4 に内分する点を E とする。 また, 辺ABの中点をFとする。 △DEF の面積が14のとき △ABC の面積を求めよ。 On+IA (p.418 EX47 G

回答募集中 回答数: 0