学年

教科

質問の種類

数学 高校生

(3)で、なぜa=2の場合分けが必要なのかわかりませんでした。また、両辺をa(a-2)で割って、という説明の意味がわからなかったので、教えてもらえると嬉しいです。

★☆☆☆ 例題83 文字係数の方程式の★★★☆ 次のxについての方程式を解け。 (I) (1)x+(a-2)x-2a=0 (2) ax²-2x-a=0(3)dx-2ax+a=0 (2)(3)問題文では,単に 「方程式」 となっており、2次, 1次方程式とは限らない。 場合に分ける 思考プロセス (x2の係数) = 0 のとき 1次方程式を解く (2) (x2の係数) ≠0のとき 2次方程式を解く (例題 82参照) 。 いる。 -2 3 1 Action » 最高次の係数が文字のときは、0かどうかで場合分けせよ (1)x2+(a-2)x-2a=0より 例題 よって 10 x=2, -a (2) (ア) α = 0 のとき,この方程式は The これを解くと x=0 (イ) α = 0 のとき, 解の公式により (x-2)(x+a)=0x2+(a+B)x+αB = 0 exe -2x = 0 __(−1)±√(−1)-α(-a) 1±√α° + 1 x= a == +1>0より, これは解として適する。 a 最小公 て,各 fa = 0 のとき x=0 。 解) から、 SB (ア)(イ)より 1 ±√2+1 a = 0 のとき x= (3) ax-2ax+α = 0 より a(a-2)x=-a あるか - ac のとき (x+α)(x+β)=0 a = 0 のとき,与えられ た方程式は1次方程式と なる。 2次方程式 ax2+26′x+c=0 の解は x= 6' ±√b2-ac (ア) α = 0 のとき,この方程式は 0.x = 0 よって、 すべてのxで成り立つから, 解はすべての実数。 (イ) α = 2 のとき,この方程式は 0.x = -2 a = 0 の可能性があるか ら,いきなり両辺をαで 割ってはいけない。 3 章 2次関数と2次方程 この式は成り立たないから,解はない。 (S) 照。 (ウ) α = 0, 2 のとき x=- 1 a-2 1 2-a Mod Job a(a-2) ≠0 より 両辺 をα(a-2) で割って a = 0 のとき (ア)~(ウ)より |a=2のとき すべての実数 解なし 09- a x= a(a-2) な 1)= 1 1 a-2 2-a a = 0, 2 のとき x= 2-a Point...文字係数で場合分けする方程式の解法 方程式の最高次の係数が文字のときは,その値が0かどうかで場合分けする。 最高次の係数が0のとき,(3)のように,解がすべての実数となる場合(不定)や、解な しとなる場合(不能)もあることに注意する。 練習 83 次のxについての方程式を解け。 C (1)x2+(3-4)x-3α = 0 ■ (2) ax2+x-a=0 (3) a²x-2=2ax-a

解決済み 回答数: 1
数学 高校生

ピンクのマーカーで目印をつけているところが、どういう事なのか分かりません。 どこをどうとって解と係数の関係があるのでしょうか?

290 本 例題 184 3次関数の極大値と極小値の和 αは定数とする。 f(x)=x+ax²+ax +1 が x=α, B (a</) を る。 f(a)+f(B)=2のとき、定数αの値を求めよ。 CHART & SOLUTION 3次関数f(x)がx=α,β で極値をとるから、α.8は2次方程式(x) = 0 しかし、f(x) = 0 の解を求め、それを(w)+f(B)=2に代入すると計算が増 f(a)+f(8) はαとβの対称式になるから まと 数学Ⅱ p.283 のである。 の特徴 3次 20 αβの対称式 基本対称式α+β, αβ で表されるに注目して変形。・ なお、α+ ß,aβ は,f(x)=0 で解と係数の関係を利用するとαで表される。 解答 f'(x) =3x2+2ax+α f(x) が x=α, β で極値をとるから, まず、f(x)が極値を f'(x) = 0 すなわち 3x2 +2ax+α=0 は異なる2つの実数解 α, β をもつ。 つようなαの範囲を めておく(基本例題1 (1) と同様)。 ①の判別式をDとすると D = a² -=a²-3a=a(a-3) D> 0 から a<0, 3<a ② また、①で,解と係数の関係により 2 a+b=-ga,ab=- ここで f(α)+f(B)=α+ax²+aa+1+3+a2+aß +1 =(ω°+β)+a(a2+β2) + α (a +β) +2 =(a+B)-3aB(a+B)+α{(a+B)2-2aß}+α(a+β)+2 α³+B³ =(a+B)-3aB(a+B), a2+B2=(a+B)^2aB ← α, β を消去。 +a(-a)-2a)+(-a)+2 -7a-4a²+2 (a)+f(B)=2から 12/17/20°+2=2 よって 2a3-9a2=0 すなわち a²(2a-9)=0 9 ②を満たすものは a= inf. この問題では極大値 と極小値の和f(a)+f(B) を考えた。 極大値(もしく は極小値)を単独で求める 必要がある場合に、 極値の x座標であるα (もしくは β) の値が複雑な値のとき は EX 148 を参照。 RACTICE 184Ⓡ 関数 f(x)=2x+ax²+(a-4)x+2の極大値と極小値の和が6であるとき、定数。 の値を求めよ。 [類 名城大

解決済み 回答数: 1
数学 高校生

数Ⅰの問題です 写真の青線の部分の意味がわかりません 教えてください

基本 例題 45 √3 が無理数であることの証明 00000 命題「n は整数とする。n' が3の倍数ならば,nは3の倍数である」は真で ある。これを利用して, √3 が無理数であることを証明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 基本44 √3が無理数でない (有理数である)と仮定する。このとき、3=r(rは有理数)と仮 定して矛盾を導こうとすると,「3=の両辺を2乗して、3=r」となり、ここで先に進 めなくなってしまう。そこで,自然数 α, bを用いて3=1(既約分数)と表されると仮 定して矛盾を導く。 解答 √3 が無理数でないと仮定する。 このとき √3 はある有理数に等しいから, 1以外に正の公約 a 数をもたない2つの自然数α, bを用いて3 = と表される。 b ゆえに a=√36 両辺を2乗すると a2=362. ・① よって, αは3の倍数である。 α2が3の倍数ならば,αも3の倍数であるから,kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって, 62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 したがって3は無理数である。 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という (数学A参照)。 下線部分の命題は問題 文で与えられた真の命 題である。 なお, 下線部 分の命題が真であるこ との証明には対偶を利 用する。

未解決 回答数: 1
数学 高校生

数B黄チャートの例題9(2)の問題で、画像の赤線をひいているところがなぜイコールになるのかわかりません。解説よろしくお願いします🙇‍♀️

366 基本 例題 9 等比数列の一般項 000 次の等比数列の一般項 α を求めよ。 ただし, (3) の数列の公比は実数とする。 (1)-3, 6, -12, (3) 第2項が6, 第5項が162 CHART & SOLUTION 等比数列 まず初項αと公比r 1 (2) 公比 第5項が4 p.365 基本事項 初項α 公比の等比数列{an} の一般項は αn = arn-1 (3)初項をα, 公比をrとして, 与えられた2つの条件からα, rの連立方程式を導く。 fire Ant の口に 6 (1) 初項が-3, 公比が すなわち-2である。 ゆえに,一般項は an=-3(-2)"-1 -3(-2)^1=(-6)^-1 (2)この数列の初項をα とすると, 第5項が4であるからとしないように注意! α(21)=1 =4 ゆえに a=64 よって,一般項は an=640 =64(2) n-1 26 == 平2-1=27-n (3)この数列の初項をα, 公比をrとすると ...... 「21 から 64=26であるから、 64 1 (2) \n-1 ①, ar*=162 ....... ②形できる。 ar.x3=162 6・3=162味の半分で者 P-27_11_2 ar=-6 ②から これに①を代入して ゆえに rは実数であるから r=-3 ①に代入して よって a=2 ゆえに,一般項は an=2(-3)n-1 α・(-3)=-6 の は 2 の形に変 infr"=p" については,次のことが成り立つ。 その nが奇数のとき r=ppは実数)⇔r=p r3=-27 から +3=0 ゆえに (r+3)(r2-3r+9)=0 よってr=-3, nが偶数のとき r”=p" (p≧0) ⇔r=±p r2-3r+9=0.... A ここでAを満たす実数 rは存在しない。

解決済み 回答数: 1