学年

教科

質問の種類

数学 高校生

問題⑵⑶の数学的帰納法について4つ質問させて下さい!質問量が多くてすみません… ①写真1枚目の赤の下線を引いた部分について、私の解答(写真2枚目)では全て、整数でなく自然数と書きました。私は赤線部分は自然数の範囲に収まるのかなと思っていたので、なぜわざわざ整数と書いている... 続きを読む

2021年度 〔4〕 α=2, b=1および リー an+1=2a+36, b +1=α+2b (n=1, 2, 3, ...) で定められた数列{an}, {bn}がある。 C = a b とおく。 (1) c2 を求めよ。 149 (2) cm は偶数であることを示せ。 (3) nが偶数のとき, cm は28で割り切れることを示せ。 ポイント 連立の漸化式で定められる2つの数列の一般項の積についての数学的帰納法 による証明の問題。 (1) 漸化式でn=1 とおいて求める。 (2) 数学的帰納法により証明する。 (3)n=2mとおいて, m について数学的帰納法で証明する。 解法 (1) a2=2a+3b1=4+3=7 b2=α +261=2+2=4 より C2=azbz=7×4=28 (2) a1=2,b=1,4+1=2a+3bb1=an+2b (n=1, 2, 3, ... より帰納的に a b が整数であると言えるので, cm=amb" も整数である。 cm が偶数であることを数学的帰納法により証明する。 (I)n=1のとき,c=a,b=2×1=2より C1 は偶数である。 (II)n=kのとき cが偶数であると仮定すると, a b は偶数であるから=211は 整数) とおける。 n=k+1のとき ( Level A TRAIGHT Ck+1=ax+1bk+1=(2a+3b) (+26) =2a²+7ab+6b²=2a²+14Z+6b2² =2(a²+71+3b²2 ) ここで, a2+71 + 3b²2 は整数であるから Ck+1 も偶数である。 (I), (II)より すべての自然数nに対してcm は偶数である。 (証明紋) (3) n=2m(mは自然数とおき, C2mm が28で割り切れることを数学的帰納法によ り証明する。 (I) m=1のとき, c2 = 28 より 28で割り切れる。 (II) m=kのときc2が28で割り切れると仮定すると, 28 (1は整数)とおけ る。 m=k+1のとき C24+2=a2+2b24+2 = (2a2+1+3b2+1) (a2+1+2b2+1) = {2 (2a2+362) +3 (a₂+2b₂)}{2a+3b₂+2 (a₂+2b2x)} = (7a2 + 12b2) (4a24+7b₂24) = 28a2²+97a2b2+84b2² = 28a2²+97-28/+84b2x² = 28 (a24² +971 +3b₂²) D ここで, a² +971 +3bz² は整数であるから 22は28で割り切れる。 (I), (II)より. すべての自然数mに対して C2me は28で割り切れる。 ゆえに,nが偶数のとき, cm は28で割り切れる。 (証明終)

回答募集中 回答数: 0
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
数学 高校生

2枚目の付箋を貼った行がわかりません

次関数 (1)の解 S+AS+ 7 曲線 y=x2 (-2≦x≦1) 上の相異なる3点をA(a, a²), B (6,62), C(c, c2) とする。このとき, 次の問いに答えよ.ただし,<bc であるものとする. (1) △ABCの面積Sをa,b,c を用いて表せ. (東北大) (2)a,b,c を上述した条件の下で動かすとき, Sの最大値を求めよ. CARA <(1) の考え方> 点Bを通りy軸に平行な直線と直線ACとの交点をDとし, △ABC を △ABD と ABCD に分割して考える. 3点A, B, C は相異なる点で, その左右の位置関係も判 明している. 直線 AC の方程式は, y=(c+a)x-ac .....1 ここで,点Bを通りy軸に平行な直線と直線AC との 交点をDとすると, Dのx座標は6となる. また, ① に x=6 を代入すると, y=(c+a)b-ac =ab+bc-ac より, D のy座標は ab+bc-ac である. したがって線分BD の長さは、 BD=(ab+bc-ac) =(b-c)a-(b-c)b -2 (70365 =(a−b)(b-c) ◎おうとなる。 よって, △ABCの面積Sは, S=△ABD+△BCD BD B LD -)-(1+08) I-0- SA 4X4 YA =1/12(a-b)(b-c){(b-a)+(c-b)} =1/12(a-b)(b-c)(c-a) 0 1 6x=b² <=@ BD ADAN (Bのx座標 =/(a−b)(b-c)(b-a)+(a−b)(b-c)(c-b x 2点A(a, a2), C(c, c2) を通る直線 _c²-a²ª_(x−-a)+d² y= Ac y=(c + a)x-ac c-a _(c+a)(c/a) c-a (x-a)+ a² =(c+a)(x-a)+a² =(c+a)x-ac =(c+a)x-ac (Cのx座標)一 (c+a) (-a) žá²+² (Bの座標 必ず面積分割すること (②2)の <--2 関係 (2)の解 a. (i (ii であ a= NAJC よ + One (1)のよ 学ぶべ AB= すこS -2≤

回答募集中 回答数: 0