学年

教科

質問の種類

数学 高校生

緑色で丸で囲っているところについて。なぜ1≦3分の4aとなっているのにx=3分の4aはダメなんですか?

355 64 基本 例題 223 係数に文字を含む3次関数の最大・最小 00000 すなわち [2] YA [2] [2] は区間に極大値をと a³ α を正の定数とする。 3次関数f(x)=x-2ax2+αx0≦x≦1 における最大 立命館大 ] 基本 219 重要 224 4 るxの値を含み, 極大値 が最大値となる場合。 で最大となり 0 a 1 a 3 値 M (α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう ya になる (原点を通る)。 ここで,x= =/1/3以外にf(x)=f(10/28) ( 0 よって、1/3 α (1/3<α) が区間 0≦x≦1に含まれるかどうか a a 3 で場合分けを行う。 満たすx (これをαとする) があることに注意が必要。 <a a f(x)はx=/10/ M(a)(0) 4 [3] 0< <1/3a<1 すなわち 0<a<212 のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から f'(x)=3x²-4ax+α2=(3x-a)(x-a) 解答 f'(x)=0とすると x= a 3. a まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 a>0であるから, f(x) の増減表は次のようになる。 <a>0 から a x a ... 3 0<<a f'(x) + 0 0 +1 (0)\-(E)\ 0<a<12/13<a のとき [3] 最大! a2-2a+1 a jal [3] は区間に極大値をと るxの値を含むが、 区間 この右端の方が極大値より も大きな値をとり, 区間 の右端で最大となる場合。 10 a a 4 3 M(α)=f(1)=α-2a+1 24≦3のとき M(a)= このとき 大阪 <f(1)=13-2a・12+α2.1 =a²-2a+1 f(x) 極大 (0) ここで,f(x)=x(x2-2ax+α²)=x(x-α)からもう (*) 曲線y=f(x) と直線 x= (3)=(-a)=7a³ 4 a³, f(a)=0 OL-13+TS =1/3以外にf(x) = 27 を満たすxの値を求めると, 3次関数の対称性の利用 目 4 検討 p.344 の参考事項で紹介した性質, 3 を用いて,f(x)=2742 を満たすx= 1/3以外のx の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点(つまり,変曲点) の y=f(x) x 座標は x=- -2a 2 3.1 3 点において接するから, f(x)/(x) 4 f(x)= =270から (1 x³-2ax²+a²x-7a³=0 4 で割り切れる。このこと を利用して因数分解する とよい。 S ゆえに (x-1)(x-1/4)-10-19 1102a a a 15 3 x= であるから X= 15 4 1 0 よって, f(x) 0≦x≦1における最大値 M (α) は,次のよ うになる。 01 9 a 4 3 4 a [1] 1<1/3 すなわち 4>3のとき 1 0 3 f(x) はx=1で最大となり M(a)=f(1) <指針_ a2-2a+1 -最大 ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。 0 a a x 3 a 3 2 で, a+ から、 3 11/24)となる。 なお, p.344 で紹介した性質を用いる方法は,検算で使う程度 としておきたい。 で 0.0 6章 6 最大値・最小値、方程式・不等式 ことしないよ 練習 x3 0223 は正の定数とする。 関数f(x)=- x²+ 3 ax²- ピー2ax+αの区間 0≦x≦2におけ 3 p.368 EX142 る最小値 m (a) を求めよ。

未解決 回答数: 1
数学 高校生

この問題が全体的にわかりませんでした。詳しく教えてもらえると嬉しいです

章 2次関数の最大・最小 最小の文章題への応用 ** 仕入れ値が1kg あたり 1500円の食料品を, 1kg あたり2000円で売ると, 1日あたり800kg 売れるが, 売値を1kgあたり10円値下げまたは値上げ するごとに, 売上量が20kg ずつ増加または減少するという。 1日あたり の利益を最大にするためには,1kgあたりの売値をいくらにすればよいか。 また,そのときの1日あたりの売上量はいくらか。 Action 文章題は、未知のものをxとおいてその変域に注意せよ 例題 33 未知のものを文字でおく 条件 わか 1kg あたり 10x 円値下げ (値上げ)すると、 売上量は20xkg増加(減少) のとり得る値の範囲(売値)20,(売上量) 0から考える。 1kg あたりの売値を 10x 円値下げして, (2000-10x) 円と すると、1日あたりの売上量は (800+20x) kg となる。 た x0 のときは値上げを示す。 2000-10x≧0 かつ 800 +20x≧0 であるから -40 ≤ x ≤ 200 ...① 1日あたりの売上金額は (2000-10x) (800 +20x) 円 1日あたりの仕入れ金額は 1500(800+20x) 円 1日あたりの利益を円とすると dy= (2000-10x) (800+20x)-1500(800+20x) =-200x2 +2000 x +400000 売値, 売上量が負の数と なることは考えられない から ( 売値) 0, (売上量) 0 (利益) (売上金額) (仕 入れ金額) 思考プロセス YA =-200(x-5)2 +405000 405000 50 200 ①の範囲におけるyのグラフは, 右の図の実線部分である。 よって, グラフより, yは x=5のとき最大値をとる。 -40 / 05 x したがって, 利益が最大になるのは50円値下げするときでx=50であ 1kgあたりの売値は 1950円,1日あたりの売上量は 900 kg x=5>0 であるから値下 げすることになる。 Point... 最大・最小に関する文章題を解く手順 ① 未知数や変数を x, y, 2, ・・などとおく。 ②おいた文字のとり得る値の範囲を求める。 ③問題の条件を式で表す。 ④式を変形し,解を求める。 ⑤ 必要に応じて, 結論が② に適するかを調べる。 ← 10x 円値下げするとする。 ← 2000-10x≧0,800 + 20x≧0 y = (2000-10x) (800+20x) -1500(800 + 20x) ←y=-200(x-5)+405000 x=5は-40≦x≦200 の範囲 を満たす。 練習 71 1個の原価が80円の商品を, 単価100円で売ると, 1日あたり800個売れる。 単価を1円値下げまたは値上げするごとに, 1日の売上個数は10個ずつ増加 または減少するという。 1日の利益を最大にするためには,単価をいくらにす ればよいか。 また, そのときの1日の売上個数はいくらか。 p.155 問題71

未解決 回答数: 1
数学 高校生

命題の証明のところなんですけど、意味がわかりません💦誰か教えてください🙏🙏🙏

DO 項 3 本例題 43 対偶を利用した命題の証明 79 00000 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (2)626 ならば 「| a +6|>1 または |a-b>3」 (1) x+y=2 ならば 「x≦1 または y≦1」 CHART & SOLUTION p.76 基本事項 6 対偶の利用 pomu 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。 そこで, 対偶が真であることを証明し、もとの命題も真である, と証明する。 条件 x または y≦1」 の否定は 「x>1 かつy>1」 (2)対偶が真であることの証明には、次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 2章 6 =0 #0 とされる。 「x>1 かつy>1」 ならば x+y= これを証明する。 x>1, y>1 から x+y> +1 すなわち x+y>2 よって, x+y≠2 であるから, 対偶は真である。 したがって,もとの命題も真である。 (2) 与えられた命題の対偶は 「α+ 6≦1 かつ a-b≦3」 ならば2+62<6 これを証明する。 |a+6|≦1, |a-b≦3 から (a+b)2≦12, (a-b)2≦32 (a+b)2+(a-b)2≦1+9 ←pg の対偶は gp ←x>ay>b ならば x+y>a+b (p.54 不等式の性質) A²=A² ->1 よって ゆえに よって 2a2+62) ≦10 a+b25 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + 625 と 5<6 から a2+62<6 ら選べ POINT 条件の否定条件, gの否定を,それぞれ,g で表す。 かつ または pまたはq かつ PnQ=PUQ PUQ=PnQ PRACTICE 43º 文字はすべて実数とする。 次の命題を, 対偶を利用して証明せよ。 (1)x+y>a ならば 「x>α-b または y>b」 (2)xについての方程式 ax+b=0がただ1つの解をもつならば α≠0 論理と集合

未解決 回答数: 1