学年

教科

質問の種類

数学 高校生

(ア)で、2x -x^2≧0を答えに反映させなくてよいのはなぜですか?

3ルートがらみの方程式 不等式を解く コである。>- の(ア)/2.ォ-%3D1-2rを満たす実数:の値は の(イ)(5-』 <z+1を解け、 のウ)不等式/3-2r22z-1 を解け。 (京都産大·理系) (龍谷大·理系(推薦) (東京都市大) ルートがらみの方程式 不等式のことを, 無理方程式· 無理不集 図形問題を解くときにも現れる 式と言う、教科書的には数Ⅲの内容だが, 図形問題を解くときにも(解法によっては)現れることがあ るので, ここで練習しておくことにしよう。 解くときの注意点 2乗すると同値性がくずれる. 例えば、A=B→ A?=B°であるが, A'=B? =D A=Bである (例えば,A=-2, B=2のとき, A=B? だが, A=Bではない). また, AZB→ A?>B2であ る(例えば,A=1, B=-2のときを考えよ). 「AZB → A2B'」 という同値変形ができるの は、A20かつB20のときである。両辺が0以上なら, 2乗しても同値である. ルートの中は0以上であり, / 実際にどのようにするかは, 以下の解答で. 0 2乗してルートを解消するが, その際に注意が必要である。 の値は0以上である。 5. 27ーズ20が要けうが、ス(2ーx)2o。 x全0.2 % ■解答 (ア)V2.ェーェ2 =1-2.c → 2.ェーa?=(1-2.)? ……① かつ1-2.c20 のを整理すると, 5.z?-6.c+1=0 Gののとき,右辺20により 2.ェー2?20であるから, ルート 中は0以上であることが保証 れる。 (z-1)(5.c-1)=0 1-2.ェ20を満たすェを求めて, c= 1 1227 し2%

回答募集中 回答数: 0
数学 高校生

薄い黄色で印をつけた部分の文言が、『なぜ必要なのか?』『一体何を意味しているのか?』がわかりません。教えていただけませんか。

10 1次不等式/解の存在条件, 整数解の個数 (ア)k>0を実数とするとき, 2っの不等式 |2.z-3|<2, | kz-5|<んを同時に満たす実数ェが存 在するようなkの値の範囲は, k> である。 (東京経大) (イ)不等式ェ-< 2 18 を満たす整数zの個数は 7 である. 正の数aに対して, 不等式 7 <aを満たす整数zの個数が4であるとき, aのとりうる値の範囲は コである。 (京都産大·理, 工, コンピュータ理工(推薦) 不等式の解の存在条件 また,aくbかつc<dのとき, aく』くりかつc<ェくd を満たすェが存在する条件は, aくdかつ c<6である。 数直線を活用する 書いて考えると明快である. 答えの範囲で端点が入るかど うか(範囲がくかくか)を間違えやすいので, 十分注意を払おう. a<zくbを満たすこが存在する条件はα<bである。 a<dだけだとダメ a<dかつcくりならOK (イ)のような問題では, 数直線を bc d acbd a 1-くxく1け b C ■解答量 d b a (ア) |2.ェ-3|<2のとき, -2<2.2-3<2 くく 2 0くは、一けく () -く、出くけ と 5 1kr-5|<んのとき, ーんくんz-5<ん. k>0により, -1+号<z<1+… k 5 k>0から,く1+ーに注意すると, ①と②を同時に満たすェが存在する条件は, 2 k 5 7 10 5 -1+-く k 5 どう 2 k 2 7 -1+号-OK -1+-ダメ 5 10 1C O0 27

回答募集中 回答数: 0
数学 高校生

薄い黄色で印をつけた部分の文言が、『なぜ必要なのか?』『一体何を意味しているのか?』がわかりません。教えていただけませんか。

10 1次不等式/解の存在条件, 整数解の個数 (ア)k>0を実数とするとき, 2っの不等式 |2.z-3|<2, | kz-5|<んを同時に満たす実数ェが存 在するようなkの値の範囲は, k> である。 (東京経大) (イ)不等式ェ-< 2 18 を満たす整数zの個数は 7 である. 正の数aに対して, 不等式 7 <aを満たす整数zの個数が4であるとき, aのとりうる値の範囲は コである。 (京都産大·理, 工, コンピュータ理工(推薦) 不等式の解の存在条件 また,aくbかつc<dのとき, aく』くりかつc<ェくd を満たすェが存在する条件は, aくdかつ c<6である。 数直線を活用する 書いて考えると明快である. 答えの範囲で端点が入るかど うか(範囲がくかくか)を間違えやすいので, 十分注意を払おう. a<zくbを満たすこが存在する条件はα<bである。 a<dだけだとダメ a<dかつcくりならOK (イ)のような問題では, 数直線を bc d acbd a 1-くxく1け b C ■解答量 d b a (ア) |2.ェ-3|<2のとき, -2<2.2-3<2 くく 2 0くは、一けく () -く、出くけ と 5 1kr-5|<んのとき, ーんくんz-5<ん. k>0により, -1+号<z<1+… k 5 k>0から,く1+ーに注意すると, ①と②を同時に満たすェが存在する条件は, 2 k 5 7 10 5 -1+-く k 5 どう 2 k 2 7 -1+号-OK -1+-ダメ 5 10 1C O0 27

回答募集中 回答数: 0
2/2