学年

教科

質問の種類

数学 高校生

この問題の解説をしてくださる方いらっしゃいませんか、?🙇‍♂️

このとき, 128 統計的仮説検定 ある市の市長選挙にちの人が立候補した。投票において、白頭や無効票はないもの とする。このとき, どちらかの候補の得票率が50%より多いと, 当選となる この選挙において、投票所における出口調査で、無作為に選んだ 400人のうち, 230 人が A に投票したという結果が出た。やれる このことから, Aが当選確実かどうかを有意水準 5%で仮説検定をする。 まず帰無仮説は「Aの得票率が ア 」であり、対立仮説は「Aの得票率が イ 」で の標本平 ある。 その標 次に,帰無仮説が正しいとすると,大きさ400の標本における比率に対し、標準化した確 変数は, 分布と統計的推測 であり、これ ある。 X=6 「A.B の 0.5である やすいと この 50 れる」 片側 か き po- z= エ Bにど 改) となり,これが標準正規分布に近似的に従う。 今回の出口調査の結果から求めたZの値を20とすると,標準正規分布において確率 P(Z≧zo) の値は0.05よりも オ ので,有意水準5%で, Aは当選確実と カ ア イ の解答群(同じものを繰り返し選んでもよい。) 230 400 である 230 400 ではない 230 400 230 より大きい より小さい 400 ④ 0.5である 0.5ではない 0.5より大きい 0.5 より小さい ウ エ の解答群 (同じものを繰り返し選んでもよい。) 1 1 1 0 400 200 40 20 2 ⑦ 4 20 40 オ |の解答群 ⑩ 大きい ① 小さい カ |の解答群 ⑩いえる ①いえない 14 SI 12 アイウエオカ 520

回答募集中 回答数: 0
数学 高校生

〰️引いてるところが理解できません!!! (問題の「カ」のところです) どのように考えたらいいのでしょうか?

練習問題 107 母平均の仮説検定 ある工場で作られたジュースの容量は1800.0mL と表示されている。このジュース400本を無作為に抽出しジュースの容量を 計測したところ、平均は1796.7mL,標準偏差は 26.4mLであった。 太郎さんと花子さんは,この調査の結果からジュースの 容量は表示通りではないといえるかどうかを有意水準5%で両側検定しようとしている。 花子:この工場で作られたジュースの容量を X (mL), Xの平均をM (mL) とし,アをM=1800.0 である とします。 太郎:400は十分大きいから、標本の大きさ400の標本平均 X は,平均イ,標準偏差 ウの正規分布に近 似的に従います。 よって, Z= 花子:M = 1800.0 という仮説について両側検定するから,X≦1796.7 または X ≧ カ とおくと,Zは標準正規分布 N (0, 1)に従うと見なせます。 となる確率の値を 求めます。 正規分布表を利用すると、かの値は 0. キクケコとなり,サ 0.05 が成り立つので、 アはシ。よって、この標本調査の結果からジュースの容量はスコ 太郎:その通りです。また,棄却域を考えることによって検定することもできます。 正規分布表から P(-セソタ Z≦ センタ = 0.95であるから,有意水準 5% の棄却域は Zsセソタ セソタ Zとなります。 X = 1796.7 のときチツテトとなり、この値は棄却域に ナから, ア は よって,この標本調査の結果からジュースの容量は スという結論を得ることができます。 の解答群 ⑩ 帰無仮説 ① 対立仮説 |の解答群(同じものを繰り返し選んでもよい。) sera (0 0.066 ① 0.05 ⑤ 1773.6 ⑥ 1796.7 (2) 1.32 ⑦ 1800.0 6.60 ④ 26.4 ⑧ 1803.3 1826.4 サ の解答群 heen -20 18T2.0= (7.0) as ① < |の解答群 (0) ⑩ 棄却される ① 棄却されない。 スの解答群 FLO () 30 TO.0-(m ⑩表示通りではないといえる の解答群 ⑩ 含まれる 11.0 (0) S (1) 0.0 = (2X)9(n) 分散 ① 表示通りではないとはいえない ①含まれない 0000 とせよ 代 (n)=(2120)

回答募集中 回答数: 0
数学 高校生

この問題の2ページ目で、何故?と書いてある部分の解説をお願いいたします🙇🙏🙌 誤っている理由は方針を読めばわかるのですが、多い少ないの判断はどこからすればいいですか、? 進研模試IA19ページ

(4) 太郎さんと花子さんはこのデータを見ながら、自分たちの住んでいる町の気候 について話している。 数学Ⅰ 数学A 次の表は20枚の硬貨を投げる試行を1000回行ったときの表の出た枚数の 合である。 太郎: 自分たちの町では2月の平均気温は7℃で、8月の平均気温は27℃だそ うだよ。 表の枚数 0 1 2 3 45 6 7 89 割合(%) 0.0 0.0 0.0 0.1 0.4 1.6 3.7 7.5 11.9 16.1 花子:冬と夏の気温差が小さいんだね。 この町の人の多くは、 自分たちの町が 気候的に暮らしやすい町だと感じているんじゃないかな。 太郎:アンケートをとって確かめてみよう。 この町の人20人に,この町が気 候的に暮らしやすいと感じているかどうかをたずねたとき、 何人の人が 「暮らしやすいと感じている」と回答したら,この町全体で暮らしやす いと感じている人の方が暮らしやすいと感じていない人より多いとし てよいのかな。 花子 例えば15人だったらどうかな。 表の枚数 割合(%) 17.6 15.9 12.1 10 11 12 13 7.3 3.5 14 15 16 17 18 19 1.7 0.5 0.1 0.0 0.0 20 0.0 2.7 この表の値を用いると, 20枚の硬貨を投げて15枚以上が表となる割合は ハ ヒ %である。これを, 20人のうち15人以上が 「暮らしやすいと 「感じている」と回答する確率とみなし、 方針に従うと、「暮らしやすいと感じてい る」と回答する割合と 「暮らしやすいと感じている」と回答しない割合が等しい という仮説は フ この町は暮らしやすいと感じている人の方が暮らしやす いと感じていない人より 二人は, 20人のうち15人が暮らしやすいと感じている」と回答した場合に, 「自分たちの町では気候的に暮らしやすいと感じている人の方が暮らしやすいと 感じていない人より多い」といえるかどうかを, 次の方針で考えることにした。 方針 "自分たちの町に住んでいる人全体のうちで「暮らしやすいと感じている」と 回答する割合と「暮らしやすいと感じている」と回答しない割合が等しい” という仮説をたてる。 この仮説のもとで, 20人抽出したうちの15人以上が 「暮らしやすいと感じ 「ている」と回答する確率が5%未満であれば仮説は誤っていると判断し, 5% 以上であれば仮説は誤っているとは判断しない。 フ の解答群 誤っていると判断され ① 誤っているとは判断されず 群 ⑩多いといえる 多いとはいえない (数学Ⅰ. 数学A第2問は次ページに続く。)

回答募集中 回答数: 0