学年

教科

質問の種類

数学 高校生

19の(2)の問題で、もし、分ける部屋が区別のつかない3つの部屋なら、3!で割る で合ってますか??

8889 例題 19 重複順列 00000 (1) 0, 1,2,3の4種類の数字を用いて, 3桁以下の正の整数は何個作れるか。 ただし,同じ数字を繰り返し用いてもよいものとする。 (2)7人を,2つの部屋 A, B に入れる方法は何通りあるか。 また, 区別をし ない2つの部屋に入れる方法は何通りあるか。 ただし, それぞれの部屋に は少なくとも1人は入れるものとする。 CHART & THINKING 1章 p.279 基本事項 3. 基本14 2 順列 重複順列 n™ (i) 数字を並べてできる整数 各桁の数字の条件に注目 最高位に0は使えないことに注意しよう。 0 以外の 4個から重複を許し 3通り て2個取って並べる 3桁 2桁 1桁, それぞれの場合に分けて考えよう。 (2) 区別をなくす場合 同じものは何通りあるか考える →4通り (前半) まず, 空の部屋があってもよいとして、後で空になる場合を除く。 (後半) 区別をなくすと同じ入れ方になるものは、例えば、次のような2通りずつある (=「ペア」で現れる)ことに注意しよう。 A B A B 例 と 1 2 3 4 5 6 7 567 1234 じゃない。 (1) 3桁の整数は, 百の位の数字が0以外であるから 3×4=48 (個) 2桁の整数は 3×4=12 (個), 1桁の整数は 3個 よって, 3桁以下の正の整数は 48+12+3=63 (個) 2桁の整数は百の位の数字が 0, 1桁の整数は百と十 の位の数字が 0 とすると, 3桁以下の整数は 43個 (別解 000 になる場合を除いて 43-1=63 (個) (2) 空の部屋があってもよいものとして7人をA,Bの部屋 に入れると,その方法は 27=128 (通り) 一方の部屋が空になる場合を除くと 128-2=126 (通り) A,Bの区別をなくすと 126-263 (通り) 百の位の数字の選び方 は0以外の3通りで、 十 の位、一の位は4種類の 数字のどれでもよい。 例えば 012 2桁の整数12 003...... 1桁の整数3 W 異なる2個から重複を許 して7個取り出して並 べる順列の総数と同じ。 区別をなくすと、 一致す る場合がそれぞれ2通 りずつある。 PRACTICE 193 (1) 0, 1,2,3,4,5の6種類の数字を用いて 4桁以下の正の整数は何個作れるか。 ただし、同じ数字を繰り返し用いてもよい。 (2) 9人を, 区別をしない2つの部屋に入れる方法は何通りあるか。 ただし, それぞ れの部屋には少なくとも1人は入れるものとする。

解決済み 回答数: 1
数学 高校生

(2)です😢 楕円の公式って普通a>bだとおもうんですけど、どうして今回の答えはb>aなんでしょうか?🥲

ゆえに, Cについて, 焦点は (81) と(2,-1) 長軸の長さは10, 短軸の長さは 8 また,'上の点(3, 16 5 における接線は 13x 25 +1/16)=1 =13+5y=25 5 7 S これを軸の正方向に5,y軸の正方向に1だけ平行移動したも のが求める接線だから, 3 (-5)+5(y+1)=25 ∴.3x+5y=35 数学ⅡB48 第1章 (2) A, B の中点は (1, 2) だから [注 求める軌跡はだ円でそれをx軸の正方向に-1,y軸の正方向に2 平行移動するとAは A'(0, 1), B は B' (0, -1) に移るので,移動後の x2 円は +2=1 (6>a>0)とおける. A', B' は焦点だから, 62 -α²=1 YA 2+216 2√6 また,長軸の長さは4だから,264 ...... ② ①②より 2---- 62=4, a2=3 まよって、 求めるだ円は 2-2√6 + (x−1)² + (y−2)² ±16 O 1 -=1 3 4 グラフは右図のようになる. 18 注 だ円の中心 (焦点の中点) を用意して, それが原点になるように平 行移動すると標準形でおくことができます. ポイント だ円の性質は標準形=1 2 (g) a² 62 になおして考える 演習問題 1 -S-DA 正数kに対して,直線l:y=-- 連y=-2x+kとだ円 C:x+4y=4 (1) がある.このとき, 次の問いに答えよ. (2) lとCが接するようなんの値と接点の座標を求めよ. C焦点の座標, 長軸の長さ, 短軸の長さを求めよ.

解決済み 回答数: 1