学年

教科

質問の種類

数学 高校生

f(x)の x→+0の極限値の求め方がわかりません。 f(x)を変形させたのち、ロピタルの定理を使って解くことは可能ですか。また、その場合、写真2枚目のどこが誤りであるか教えていただきたいです🙇

? 数)に変形 00000 例題198 aは定数とする。 方程式 ax=210gx+log3の実数解の個数について調べよ。 logx ただし, lim p.326 基本事項 2,重要 197 指針▷直線y=axとy=210gx+10g3のグラフの共有点の個数を調べれ ばよいわけであるが,特に, 文字係数α を含むときは,αを分離し f(x)=αの形に変形して考えるとよい。 このように考えると, y=f(x) [固定した曲線] と y=a[x軸に 平行に動く直線] の共有点の個数を調べる……) ことになる。 NATT030 実数解の個数 グラフの共有点の個数 定数αの入った方程式 定数 αを分離する 【CHART x→∞ x 解答 真数条件より, x>0であるから与えられた方程式は 2logx+log 3 _210gx+log3 とすると x x =α と同値。 f(x)= f'(x)=2-(210gx+10g3) 2-(logx²+log 3) x² 2√3 e = 0 を用いてもよい。 x² f'(x)=0 とすると, x>0であ るから 方程式の実数解の個数 e √√3 x>0 における増減表は右のよ うになる。 また limf(x)=-8, limf(x)=0 x=- a≦0,a= 0<a< x→+0 y=f(x)のグラフは右図のように なり、実数解の個数はグラフと 直線y=α の共有点の個数に一致 するから <αのとき0個; 2√3 e 2√3 e x→∞ = のとき2個 のとき1個; x 0 f'(x) f(x) YA 2√3 e # 0 √3 e √3 y=f(x) + 2-log 3x² x2 e √3 20 極大 7/2√3 e I x y=a 6* 0 重要 199 この断りを忘れずに。 【定数αを分離。 x= log3x²=2 から 3x²=e² x>0であるから Sty=a y=f(x) x e 3-√330-12 0=xyolS-1 x→+0のとき lim X→∞ →∞, logx→ x→∞のとき logx X blog.x → 0, →0 [参考] ロピタルの定理から 1 T x → 18 =lim -=0

解決済み 回答数: 2