学年

教科

質問の種類

数学 高校生

infomationの2行目の式がなぜ2直線の交点を通る直線を表していると言えるのですか?

らず 基本18 ...... 基本 例題 78 2直線の交点を通る直線 2直線 2x+3y=7 直線の方程式を求めよ。 ・①, 4x+11y=19 123 000 ② の交点と点 (54) を通 Ip.115 基本事項 5. 基本 77 ―係数比較送) 一数値代入法 線の式が成立 よう。 CHART SOLUTION 2直線 f(x,y)=0,g(x,y)=0 の交点を通る直線 方程式 kf(x,y)+g(x,y)=0 (kは定数)を考える x, yで表される式を f(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず,①,②の交点を通る直線(条件[1]) を考え,次に,この直線が点 (54) を通る (条件 [2]) ようにする。 3章 直線 比較法 -g=0がんの ⇒f=0,g=1 この基本例題 るように --4y=0, 1=0 の交点を すから、これ 三点が定点A =入法 当な値を代入 係数を0にす してもよい。 件の確認。 うらず 解答 kを定数とするとき, 次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 (2x+3y-7)+(4x+11y-19) =0 ...... ③ ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45= 0 よって (1) 11 19 11 0 73 k=-3 |-7|2 (2,1) 別解 2直線 ①,② の交点 の座標は (5, 4) よって, 2点 (21), (54) を通る直線の方程式は 19-1=4-12(x-2) 4 すなわち x-y-1=0 これを③ に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 ax+by+c=0,ax+by+c2=0に対して kax+by+c)+azx+bzy+c2=0 (kは定数)..... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, azx+by+c2=0 を同時に満たす点であ るから,(*)はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 PRACTICE... 78 ③ 次の直線の方程式を求めよ。 (1) 2直線x+y-4=0, 2x-y+1=0 の交点と点 (-2, 1) を通る直線 (2) 2直線 x-2y+2=0, x+2y-3=0 の交点を通り,直線 5x+4y+7=0 に垂直 な直線

回答募集中 回答数: 0
数学 高校生

informationの3行目、なぜこの式が二直線の交点を通る直線を表しているんですか?

らず 2直線 2x+3y=7 基本 例題 8 2直線の交点を通る直線 ...... ①, 4x+11y=19 直線の方程式を求めよ。 CHART O SOLUTION 七較送 入注 成立 ●の 9=1 題 78 点 これ A です 「解答」 00000 ② の交点と点 (54) を通 p.115 基本事項 5. 基本 77 123 2直線 f (x,y)=0,g(x,y)=0 の交点を通る直線 方程式kf(x,y)+g(x,y)=0 (kは定数) を考える・・・・・ x,yで表される式をf(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず, ①,②の交点を通る直線(条件[1]) を考え、次に,この直線が点 (54) を通る (条件 [2]) ようにする。 kを定数とするとき,次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 k(2x+3y-7)+(4x+11y-19) =0 ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45=0 ② 19 11 10 73/ よって k=-3 7|2 3章 別解 2直線①,② の交点 11 の座標は (2,1) (5,4) よって, 2点 (2,1) (54) > を通る直線の方程式は 19-1=4-12(x-2) 4 これを③に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 αx+by+c=0,ax+by+c2=0 に対して すなわち x-y-1=0 k(ax+by+ci)+azx+bzy+c2=0(kは定数) .... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, ax+by+C2=0 を同時に満たす点であ るから,(*) はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 直線

回答募集中 回答数: 0
数学 高校生

全くわかりません どなたか教えていただきたいです!

338 第9章 整数の性質 応用問題 1 正の整数a,bに対して, a を bで割った商をα余りを とする.つ まり、 a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ. (1) aとbの公約数をd とすると,dはbとrの公約数でもある. brの公約数をd' とすると, d' はaとbの公約数でもある. (2) (3) αともの最大公約数とbrの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となる p336 の (*) を証明してみま しょう. 考え方としては, 「αと6の公約数」と「brの公約数」 が (集合として) 一致することを示そうというものです. それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αと6の公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき d bx 4 (es) bog= bog= (01)bog r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,) dは6とrの公 約数である. (2)との公約数がd' であるから, WAON (ROSS) b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'g+d'R=d' (B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,) d' はαと の公約数である。 (3)(1)(2)より「α と6の公約数」は「bとの公約数」 と(集合として) 一 致する.したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。 おません る 持 る

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

期待値の問題ですが、各確率の求め方が分かりません。 解説お願いします。

96 基本 例題 58 期待値の基本 00000 袋の中に赤玉3個,白玉2個,黒玉1個が入っている。この袋から玉を2個 同時に取り出す。 赤玉1個につき1点, 白玉1個につき2点, 黒玉1個につ き3点もらえる。このときもらえる合計点の期待値を求めよ。 CHART & SOLUTION 期待値変量 Xの値と,その値をとる確率の積の和 期待値 E=x+xz++xe は、次の手順で求める。 ① X1~Xm(とりうる値) を求める。 p.88 基本事項 ②①の各値に対する確率)を求める。ptp+... +pn=1 を確認。 (3) 解答 Ex+x+x” を計算する。 X=2, 3, 4, 5 (11)(12)(1,3)(2,2)(23) 355 5 基本 例題 1から6まで のカード とする。 (1) を (2) X の CHART I (1) X = 5 (2)[1] [2] 解答 (1) 起こ X=5 選ぶと 合計点をXとし,X=kのときの確率を で表す。 Xのとりうる値は X=2 のとき 2個とも赤玉で 3C2 D2 C2 15 X=3 のとき 約分しない (他の確率と 分母をそろえておく) 方 が,後の計算がらく。 赤玉と白玉が1個ずつで 6 (2) X 101 6C2 15 X=4 のとき 3 D3=3C12C1 したが 赤玉と黒玉が1個ずつ, または2個とも白玉で D=3C1XiC1+2C23+1 4 6C2 6C2 15 15 X=5 のとき 白玉と黒玉が1個ずつで X CXC12 p5=- 確率 6C2 15 15 225 5 215 445 3615 15 したがって, 求める期待値は 2× 15+3×15+4x+15+5×15-10-10 (*) 6 PRACTICE 582 (点) 計 1 (1) 袋の中に赤玉3個, 白玉2個, 黒玉1個が入っている。 に取り出すとき, その中に含まれる赤玉の個数の期待値 (2) 表に1,裏に2を記した1枚のコインCがある。 (ア) コインCを1回投げ, 出る数 ついて x+4 の期待値を求めよ。 (イ) コインCを3回投げるとき。 の和の期 (確率の和)=1 を確認。 もし、1にならなければ, 「とりうる値の抜け」, 「計算ミス」 がある。 個同時 した INFO 最大 とし 上の ら! PRA 1 の

回答募集中 回答数: 0