学年

教科

質問の種類

数学 高校生

どうして、底を2にするんですか??

重要 例題 38 ant = pa," 型の漸化式 | a1=1, an+1=2√an で定められる数列{an} の一般項を求めよ。 00000 【類近畿大 指針 がついている形, an² や an+13 など 累乗の形を含む漸化式 an 解法の手順は an+1=pa ① 漸化式の両辺の対数をとる。 an の係数かに注目して、底がりの対数を考える。 10gpan+1=10gpp+logpang すなわち 10gpan+1=1+glogpan 2 10gpan=bn とおくと bn+1=1+gbn → -logeMN = logM+log.N loge M=kloge M bn+1=bn+▲の形の漸化式 (p.464 基本例題 34 のタイプ)に帰着。 対数をとるときは, (真数)>0 すなわち a">0であることを必ず確認しておく。 CHART 漸化式 αn+1=pan" 両辺の対数をとる α=1>0で,n+1=2√an (>0) であるから,すべての自 解答然数nに対してan>0である。 よって, an+1=2√an の両辺の2を底とする対数をとると 10gzAn+1=10g22√an log2an+1=1+110gzan 2 bn+1=1+1/26n ゆえに 初 10gzan=bn とおくと これを変形して bn+1-2=(bn-2) ここで b1-2=10g21-2=-2 > 0 に注意。 厳密には,数学的帰納 で証明できる。 log₂(2.an) =log22+ log. 特性方程式=1+10 基本 α=2, (1) n (2) ar 指針 解答 よって, 数列 {b,-2} は初項 -2,公比 1/2の等比数列で n-1 b-2=-20 =-2(12) - すなわち bn=2-22- を解くと α=2 12 したがって, 10gzan=2-22 から an=22-22- \n-1 =21- logaan-pan-d 早 検 PLU anan+1 を含む漸化式の解法 実討 anan+1 のような積の形で表された漸化式にも 例えば 両辺の対数をとるが有効である。 LON

未解決 回答数: 1
数学 高校生

(1)についてです。 解答の2行目から3行目のところが理解できません。 解説よろしくお願いします。

38 重要 例題 19 因数分解 (3次式) 00000 (1) α+6=(a+b)-3ab(a+b) であることを用いて,a+b+c-3abc を因数分解せよ (2)x-3xy+y+1 を因数分解せよ。 CHART & SOLUTION 3次式の因数分解 (1) 組み合わせを工夫して共通因数を作る。 まず,'+6について+6=(a+b)-3ab(a+b)を用いて変形すると a+b+c-3abc=(a+b)-3ab(a+b)+c-3abc 次に,(a+b)+c について, a+bを1つの文字とみて (a+b)+c={(a+b)+c}{(a+b)-(a+b)c+c} 基本11 また,-3ab(a+b)-3abc=-3ab(a+b+c) であるから,共通因数a+b+cが現れる。 (2)1=13 と考えると, (1) の結果が利用できる。 まとめ 多項式の積の ができる。 し ことも多い。 ここでは, しながら因 (1) 共通 すべての 例 6c 項の組み 例 (2) まと 例 G 41 (1) a+b+c³-3abc =(a+b)+c-3abc =(a+b)-3ab(a+b)+c-3abc =(a+b)+c-3ab(a+b)-3abc まず, +6 を変形。 3ab が共通因数。 8+1a-(x+ ← A'+c3 =(A+c)(A2-Ac+c^) ← (a+b+c) が共通因数。 +x (x)= ={(a+b)+c}{(a+b)-(a+b)c+c2}-3ab{(a+b)+c} =(a+b+c)(a2+2ab+b2-ac-bc+c)-3ab(a+b+c) =(a+b+c)(a2+2ab+b2-ac-bc+c-3ab) 2002 T ( 2 (2)x3xy+y+1 =(a+b+c)(a+b2+c-ab-bc-ca) 3=x+y+13-3.x.y.1 108 BRE =(x+y+1)(x+y+12-xy-y・1-1・x) =(x+y+1)(x2-xy+xy+1) ← 輪環の順。 113 と考えると, (1) の 結果が利用できる形に 変形できる。 項の組 例 (3)最 2つ以 例 a → x, b→y,c→1と 考える。 “た 例 (4) 例 (5) POINT (1) の結果は利用されることもあるので,公式として覚えておくとよい。 a+b+c-3abc = (a+b+c)(a+b2+c2-ab-be-ca) 例えば、 また,これから,対称式+b+cは, (a+b+c)2=a+b2+c+2ab+2bc+2ca を利用すると,次のように基本対称式で表されることもわかる。 a+b°+c°=(a+b+c){(a+b+c)-3(ab+bc+ca)}+3abc 因な PRACTICE 198 次の式を因数分解せよ。 (1)x+3xy+y-1 (2) x³-8y3-23-6xyz と

未解決 回答数: 0