学年

教科

質問の種類

数学 高校生

例題60で 最後らへんで これはCA🟰BAではなくないですか? 比が等しいと言っているだけと思ったのですが、、💦 何故か分からないので教えて欲しいです

二等分 の外角 DEの 基本 64 5 基本例題 60角の二等分線と比の利用 00000 「Eとする。 DE // BC ならば, AB AC となることを証明せよ。 △ABC の ∠C, ∠B の二等分線が辺AB, AC と交わる点を,それぞれD, CHARTO SOLUTION 平面図形の証明問題 条件を明確にする 平面図形の証明問題では,問題文の平面図形に関する 用語・記号を四角で囲むなどして、 解法の方針を見つ けやすくする。この例題では, ZB の二等分線, ∠Cの二等分線 定理1(三角形の角の二等分線と比) DE//BC ⇒ 平行線と線分の比 を利用して, AB=AC を示す。 直線 CD は ∠Cの二等分線であるから ・① AD: DB=CA: CB ...... 直線BE は ∠B の二等分線であるから AE: EC=BA : BC.∵ 一方, DE // BC であるから ②④から ①③から AD: DB=AE: EC・・・ |CACB=AE: EC CA: CB=BA: BC ...... したがって CA=BA すなわち AB = AC CACB=BABC (4) (1) A B (2) B (3) B A E C C A (0) E B p.325 基本事項 2 D A E (線分比) =(三角形の2辺の比) ◆CA: CB=BA: BC ↑同じ辺 INFORMATION 平面図形の証明問題を解く手順 ① 問題文の平面図形に関する用語・記号を四角で囲む。 ②与えられた条件をもとに図をかく。 場合によっては補助線を引く。 1③ 注意 証明の中で新たにつけ加える線分や直線のことを補助線という。 四角で囲んだ用語 記号から, 適用できる定理がどれなのかを考える。 そして, 図を参照しながら、式を立てる。 187509GRO BAZ Not 329 3章 7 三角形の辺の比,外心,内心、重心

回答募集中 回答数: 0
数学 高校生

2枚目を1枚目と同じように計算できるんではないかと思いしたんですが、(3枚目)違いました 考え方はあっている?のになぜ1枚目のような方法で解けないのですか?

304 基本例題 47 対戦ゲームの優勝確率 あるゲームでAチームがBチームに勝つ確率は 22, BチームがAチーム 勝つ確率は 1 であるとする。 A,Bがゲームをし, 先に4ゲームを勝って ームを優勝とする。 (1) 4ゲーム目で優勝チームが決まる確率を求めよ。 (②2) 7ゲーム目で優勝チームが決まる確率を求めよ。 CHART O OLUTION > n回目で決着 (n-1) 回目までに着目 ...... (②2) Aが4勝3敗で優勝する確率を C (1/2)^(1-12/2) 7C4 解答 (1) 4ゲーム目で優勝チームが決まるのは, AチームまたはB チームが4連勝する場合であり,これらは互いに排反である。 よって、求める確率は (23) 2+(4)-47 = (2)[1] 7ゲーム目でAチームが優勝する場合 6ゲーム目までにAチームが3勝し, 7ゲーム目にAチー すぐにこの思想になることが大事!! ムが勝つときであるから, その確率は *C. ( 13 ) *( ² ) ² × ² / - としては誤り! は7ゲーム目までにAが4勝する確率であり,例えば,Aが4連勝した後 で3連敗する場合も含まれている(この場合は4ゲーム目で優勝が決まる)。 7ゲーム目で優勝が決まるから, 6ゲーム目までにAが3勝し7ゲーム目に Aが勝つ確率を求めなければならない。 B が優勝する場合も同様。 4023 3×36 + 240 3 3 [2] 7ゲーム目でBチームが優勝する場合 23 合 13 + 23 [1] と同様にして [1], [2] は互いに排反であるから、求める確率は 20 23 23 160 3 -X36=20x 36 729 ..(1/)(///x1/13-28x72 C$ ( 1 ) * ( ²3 ) * - - - * 20 23 重要例 右の図のよう ある。 地点 て地点B Ip.298 基本事項、基本品 X 確率を求め 北に行くか 確率で CHART C 最短 求め これ 本問 AT A,Bのどちらが優勝し てもよい。 確率の加法定理。 ▪nCrp" (1-p)"- 6ゲーム目までにBが3 勝し,7ゲーム目にBが 勝つ場合。 確率の加法定理。 A 解答 右の図の る。Pを があり, [1] 道 この石 PRACTICE・・・ 47③ A, B の2人があるゲームを繰り返し行う。 1回のゲームでAがB であるとする。 に勝つ確率は 1/23,BがAに勝つ確率は (1) 先に3回勝った者を優勝とするとき, Aが優勝する確率を求めよ。 ((2) 一方の勝った回数が他方の勝った回数より2回多くなった時点で勝った回数の多 い者を優勝とするとき, 4回目までにAの優勝する確率を求めよ。 [2] 道 この よっ PR

回答募集中 回答数: 0
数学 高校生

この問題についてですが、この解き方以外の方法とかってあったりしますか??どなたか別の面白い解答をしてくださる方いれば教えて頂きたいです。

84 ONGER. EEPRO 重要 例題 48 2次方程式の解と係数の関係と式の値 | 2次方程式x-mx+p=0の2つの解をα, β とし, 2次方程式xmxq= の2つの解をx, 8 (デルタと読む) とする。 (1) (y-a)(y-B) を p, g を用いて表せ。 (2),gがxの2次方程式x²ー(2n+1)x+n²+n-1=0の解であるとき, 基本 39.44 (x-a)(y-B) (8-α) (8-β) の値を求めよ。 解答 針解と係数に関係した問題では,次の3つ(互いに同値) を使い分けることが重要。 11 2次方程式 ax2+bx+c=0の2つの解がα, B b [2] α+β=- aß= a [3] ax²+bx+c=a(x-a)(x-3) (1) (y-a)(y-β) の式を導きたいから,x-mx+b=(x-a)(x-β)であることを利 用して考える。 (2)同様に (8-α) (8-B) をp, gで表し, 解と係数の関係を利用。 USOTHO (1) α,β は x 2-mx+p=0の2つの解であるから (11 x2-mx+p=(x-a)(x-β) 3-√23 2 45+²x²\£(1. ****** 補羽 (1) この等式の両辺にx=y を代入して y²-my+p=(y-a)(y-B) また,yはx2-mx+g=0の解であるから a ゆえに よって よって 4 y²-my=-q ##$^_P+vS+FORED Jel ①に代入して (r-a)(y-B)=b-g-my を消去。 (2) 8もx-mx+g=0の解であるから, (1) と同様にして (8-α) (8-β)=p-g 51+ 5TH) (r-a)(r-B)(8-a)(8-B)=(p-q)² (1-v)8- ここで, pg は x 2-(2n+1)x+n²+n-1=0の解であ るから、解と係数の関係により p+g=2n+1, ...... _r²-my+q=0UASIO FOUN =5 指針_ の方針 解の対称式の値では、こ の方針が役立つこともあ る。 =(2n+1)²-4(n²+n−1) Styx dost pg=n²+n-1){ (s+v-) 指針の② を利用。 (p−q)²=(p+q)²-4pq (1-vS+x) (S−2+◄(p-q)²=p²-2pa+d (r-a)(r-B)(8-a)(8-ß)=5 1-² = (1) のyを6におき換え るだけでまったく ことがいえる。 = (p²+2pq+q²)-4p = (p+q)²-4pq このとき,

回答募集中 回答数: 0