学年

教科

質問の種類

数学 高校生

黄チャートの例題46の(2)の問題で、(1)の結果を利用すると書いているんですけど、なにを利用しているのかわかりません。教えてください🙇‍♀️

基本 例題 46 有理数と無理数の関係 (1) a, b は有理数とする。 a+b√2=0 のとき, √2 が無理数であることを 用いて, a=b= 0 であることを証明せよ。 (2)(1+√2)x+(-2+3√2)y=10 を満たす有理数 x, yの値を求めよ。 CHART & HINKING MOITUJO 2 基本44 (1) 直接証明するのは難しいから, 背理法を利用しよう。 結論の否定は 「α≠0 または b≠0」であるが,この仮定からスタートする必要はない。a+b2=0 という式に注目し 最初の仮定を見極めよう。 (2)√2について整理して, (1) の結果を利用する。 このとき, 前提条件 「x,yは有理数√2 は無理数」 を書くことを忘れないよう注意。 解答 (1)6=0 と仮定すると √2=-1 b a,bは有理数であるから,右辺のは有理数である。 左辺の√2 は無理数であるから,これは矛盾している。 よって b=0 a+b√2=0に6=0 を代入してa=0 したがって a=b=0 (2) 与式を変形して (x-2y-10)+(x+3y)√2 = 0 x,yは有理数であるから, x-2y-10, x+3y は有理数で あり√2 は無理数である。 理由である a+b√2 0 から b2= 両辺を6(≠0) で割ると 2=-1 a このことから、最初の仮 定は 60 だけでよい。 2について整理。 この断りは重要。 詳しくは右ページ参照。 ゆえに、(1)の結果から これを解いて x-2y-10=0, x+3y=0 x=6,y=-2 POINT 有理数と無理数 a,b,c,d を有理数, √T を無理数とすると ① a+b√7=0 ② a+b√T=c+d√T のとき a=b=0 のとき a=c, b=d MOITAMЯO ここで,「a, b,c,d は有理数」という条件に注意しよう。 この条件がないと, 例えば① では a=b=0以外に a=√T(無理数) b=-1 もa+b√T =0 を満たしてしまう。 PRACTICE 46Ⓡ 3 √3 は無理数である。 7+a√3 2+√3 24 BUITAR 9 -=6+9√3 を満たす有理数 α, b の値を求めよ。

解決済み 回答数: 1
数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0