学年

教科

質問の種類

数学 高校生

この問題なぜmは5と6の間だにあると想像できるのですか? 僕は最大が5なので5/2a -2<=5ではないかと考えました、

◆文字式の掛けたり割ったりは, 「THE step1 例題で鉄則をつかむ × 例題 1 「THE ア x< イ αは定数とする。xについての不等式 2x5a-4を満たす』の値の範囲は, a- ウである。これを満たす最大の整数xが5であるとき I ア イ ウ a- オより,αは |カキ ク <a≤ ケコ を満たす。 サ 鉄則 1 不等式の解でく,,>, ≧のどれを選ぶかは, 数直線で判断 xmを満たす最大の整数xが5であるとき、定数はだいたい5と6 の間にありそうなことは想像ができる。でも, mが「5より大きい or 5以 「?」 や 「6より小さい or 6 以下?」 といった細かいところは,すぐにはわ からない。そんなときは、数直線をかき、目で見て丁寧に判断をしよう。 際どい場合をすべて数直 線で表すと, 正しい状況 を目で見て判断できる。 ここでは, (i), (Ⅲ)が正しい 状況なので は 5<m≦6を満たさなけ ればならない。 (i) =5の場合 (ii) 5<<6の場合 (i) =6の場合 m m 0 1 2 3 4 5 6 x 0 1 2 3 4 (5 6 x 0 1 2 3 4 5 6 解答解説 m 2x<5a-4より, 5 x<- 2a-2 ・ア, イ, ウの(答) A これを満たす最大の整数xが5であるとき、上の式の右辺は, 基礎不等式の性質 を確認 不等式の両辺を同じ正の数で割っても 不等号の向きは変わらない。 数学-6

未解決 回答数: 0
数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

(2)がどういう原理で変形されているのか教えて欲しいです🙇‍♀️

早 唯 Think 例題 206 反復試行 (6) 最大確率 **** 1個のさいころを13回続けて投げるとき、6の目が回出る確率を Ph とする.このとき,次の問いに答えよ.ただし,0≦k≦13 とする. (1) Pk, Pk+1 の式で表せ. (2) Pkが最大であるkの値を求めよ. 考え方 (2) Pk Ph+1 の大小関係(Ph> Pk+1, Pk <Pk+1)を調べる. 解答 (1) 13回の試行で, 6の目がん回出るとき, 6の目以外は (13-k) 回出るから. Ph=13Ckl (1)(3) 13-k 同様に,0≦k≦12 のとき, k+1 Pk+1=13Ck+1 6 (2) PR 308 1 1 5 Pk+1 (k+1)! (12−k)!()() 13! k!(13-k)! (1)(2) 6 13-(k+1) =13Ck+10 12-k 6 k 13-k 6 k+1, 12-k 「6の目が出ない」 は「6の目が出る」 の余事象 P+1はPのに +1 を代入すると よい. (k+1)=(k+1) ・k! (13-k)! =(13-k)(12-k)! 1 6(13-k) -X 6(k+1) 5 X- k+1 6 13-k 1 5 5(k+1) 13-k 6 k=1/3のとき (8)(LP=Pk+1 となるが、 =P+1となるが, (i) = PR+1 13-k 4 21を解くと,k= k≤ 1.33... k, k+1が整数とな PR 5(k+1) 3 らないので不適 Pk より,k1のとき, Ph+11 つまり Pr<Pk+1 > 1 つまり Ph<Pk+1 おおよそ下の図 最大値引 cus (ii) Ph+1<1 のとき,(i)より、 k>1.33. Pk より,k≧2 のとき,P, Ph+14 (i), (i)より,k=0 のとき Po<P1, k=1 のとき Pi<P2, k=2のとき P2P3, k=3 のときP3>P4, となり, Po<Pi <P>P3>P> ...... >P13 よって,k=2のとき最大となる。大 0123 1213k 具体的に代入して書 き並べる。

未解決 回答数: 1