学年

教科

質問の種類

数学 高校生

画像3枚目のように比をつかって解いたのですが、 PR/AB=10/21になってしまいました。 この考え方は間違っていますか?教えてください。

分散、標準偏差 入ります。 ア, イ, m」 と標準偏差のは 450 イウ,...で示 1.1/2(1-2)=125=5 大きいから、 Z5 従う。 また, X=60 のとき X-50とすると、 は近似的に標準正規分 V(X),標準偏差 (X)は E(X)=np V(X)=np (1-p 確率変数Xが二項分布 B(n, 従うとき,Xの期待値 E(X) OP= 20A+OB 1+2 OA+OB 内分点の位置ベクトル 次に,点は線分AQ の中点であるから, AQ2AH であり 線分ABをmin に内分する点を Pとすると OQ = OA + AQ =OA+2AH OP= "OA+mOB m+n ... ① 60-50-2 5 B 50,212) に従う。よって、どの期待値mと標準偏差のは X-np √np (1-p) 正しいとすると、1回の試合でAが勝つ確率は であるから, Y 従うとき,Z= 確率変数Xが二項分布 B(n, (X)=√mp(1-p) 二項分布の正規分布による近 点は直線 OP 上の点であるから, kを実数として 0 OH = k OP とすると が大きいとき, 確率変数は と表される。このとき AH-OH-OA - kOP - OA = k(²/OA+/+OB)-OA B mPn 点Pが直線AB上にある H B ⇔AP = AB 的に標準正規分布 N(0, 1)に従う = (k-1)OA+KOB --2 を満たす実数k が存在する。 ベクトルの差 50.12=25 ここで,点Qは直線OP に関して, 点Aと対称な点であるから, OPAQ であり AB = OB-OA OPAH (③) Y-25 50は大きいから, Z2= 5 とすると, Zは近似的に標準正規分 √2 したがって 0, 1)に従う。 また, Y=30 のとき 30-25 Z₂ = 2=12 5 =1.4142≒1,414 .. ② OP.AH=0 (OA+/OB){(1/2-10A+/kOB}=0 (20A+OB)・{(2k-3)OA+kOB}=0 (4k-6) OA 2+(4k-3) OA・OB+k OB=0 (4k-6)×12+(4k-3)x1+k(2)=0 8k-15 - =0 P(-1.96 ZS 1.96) = 0.95 解法の糸口 り,有意水準 5% の棄却域は Z≦-1.96 または 1.6 Z ..③ ここで 2009年から2018年の全100 試合の中で実際にAが勝ったのは 24+3660 (試合) 正規分布表を用いて棄却域を 求め, (1) (2)それぞれ求めた Z1,Z の値が棄却域に入るか どうかを調べる。 15 k = 16 これを②に代入して AH=438×168-10A+1/3×1/8OB ①の値は③に入るから, 仮説Hは棄却される。 また, 2019年から2023年の全50試合の中で実際にAが勝ったのは30試 ②の値は③に入らないから, 仮説Hは棄却されない。 以上により, 有意水準 5% の検定において, (1) では仮説Hは棄却されて (2) では仮説Hは棄却されない (①)。よって,(1)ではAとBの間に力の差があ ると判断でき, 2)ではAとBの間に力の差があるとは判断できない (①) 標本から得られた確率変数の値が 棄却域に入れば仮説を棄却し、 棄 域に入らなければ仮説を棄却しない 数学Ⅱ 数学 B 数学C 第6問| ベクトル 解法 内積の定義により OA・OB = |OA||OB|cos ∠AOB 1 =1x√2 x 1 2√2 2 また、点Pは辺AB を 1:2に内分する点で あるから 0 A 'B ベクトルの内積 探究 ①でない2つのベクトル なす角を90° の 180° とする と ab=a||6|cose =-3-OA+16 OB さらに, ① に代入して OQ=OA+2(-20A+16OB) =OA+OB 次に,点Rは直線OQ 上の点であるから, 実数として OR = 1OQ と表される。このとき OR = (OA+OB) -1108 +108 ベクトルの垂直条件 ①でない2つのベクトルに ついて abab=0 ・B R 学8年 解法の糸口 OQ をもとに OR をOA と OB を用いて表すことを考える さらに、 PR を AB を用いて す。

回答募集中 回答数: 0
数学 高校生

二次方程式の解の判別です。 (2)の指針と解説にある、判別式がゼロより小さいの一方だけが成り立つという意味がわかりません。解説お願いします🙏

74 基本 例題 41 2つの2次方程式の解の判別 は定数とする。 次の2つの2次方程式 ①(k+8)x2-6x+k=0 x2-kx+k2-3k=0 について,次の条件を満たすんの値の範囲をそれぞれ求めよ。(P- (1) ①,② のうち, 少なくとも一方が虚数解をもつ。 (2)①,② のうち, 一方だけが虚数解をもつ。 ②(1) 1)S+ (E) ②については,2次方程式であるから,x2の係数について,k+80 に注意。 ①,②の判別式をそれぞれD, D2 とすると,求める条件は (1) Di<0 または D2<0 →解を合わせた範囲 (和集合) 基本40 (2)(1020) または (D120 かつD2<0) であるが,数学Ⅰでも学習したよ うに, Di<0,D2<0 の一方だけが成り立つ範囲を求めた方が早い。 チャート式基礎からの数学Ⅰ+Ap.200 参照。 CHART 連立不等式 解のまとめは数直線 ②の2次の係数は0でないから k+8≠0 すなわち k≠-8 解答 このとき,①,②の判別式をそれぞれ D1, D2 とすると(( ‚α D₁=(−k)²−4(k²-3k)=-3k²+12k=−3k(k−4) -+- D₂S (4) 4 =(-3)-(k+8)k=-k2-8k+9 8+ (S-) SI+SA 0<a =-(k+9)(k-1) 1)x+ (1) 求める条件は,kキー8のもとで D1 <0 または D2<0 DI<0からん(k-4)>0 キー8であるから ( 普通, 2次方程式 ax2+bx+c=0とい うときは,特に断りが ない限り, 2次の係 αは0でないと るために ( ゆえに<0,4<k+- 30k<-8,-8<k<0, 4<k..... ③ > D<0 から (k+9)(k-1)>0 2 実③ よって ...... k<-9, 1<k 4 JS1=s-9-8 求めるんの値の範囲は,③と④ の範囲を合わ #k<-8, -8<k<0, 1<k 01 4 >> (2) ①,② の一方だけが虚数解をもつための条件 は, Di<0, D2<0 の一方だけが成り立つことで あるある 多くの場合、2次方 -9-8 91 ゆえに、③、④の一方だけが成り立つkの範囲 を求めて-9≦k<-8,-8<< 0, 1 <k≦4

解決済み 回答数: 1
数学 高校生

こういう問題で、f(x)というものをよく見かけるのですが、これはどのような場合に用いるのでしょうか?解答をかくときに毎回意味が分からなかったので、教えてもらえると嬉しいです。

頻出 ★★☆☆ こを求めよ。 y=ax2+bx+6 105 絶対不等式 [1] 不等式の解の存在 ★★☆☆ (1) すべての実数xについて, 2次不等式+2kx-3k+4>0が成り立 つような定数kの値の範囲を求めよ。 Acid (2) 2次不等式 x-kx+k+3<0 を満たす実数x が存在するような定 数kの値の範囲を求めよ。 ReAction 不等式は,グラフと x 軸の位置関係を考えよ 例題98 3 x 4+ =ax2+bx+6 このプロセス 「条件の言い換え (1) すべてのxについて (1) (2) y= ⇒y= のグラフがx軸より上側にある。 とx軸の共有点は [ 3 (2)y= のグラフがx軸より下側にある 部分が存在する。 + a B 9 y= とx軸の共有点は 2次関数と2次不等式 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 V y=f(x) D<0 のグラフ ■, x軸と (1) f(x)=x2+2kx-3k +4 とおく。 - 0)で交 例題 93 すべての実数x について f(x)>0 が成り立つのは, y=f(x)のグラフがx軸と共有点をもたないときである。 よって, f(x) = 0 の判別式をDとすると D< 0 を満たす D ゆえに 1=k-(-3k+4)=k+3k-4 4 グラフ = (k+4)(k-1)0 軸と したがって -4<k<1 0) で交 (2) f(x)=x-kx+k+3 とおく。 f(x) <0 を満たす実数x が存在するのは,y=f(x)の 例題 グラフがx軸と異なる2点で交わるときである。 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 \y=f(x) 93 よって,f(x) = 0 の判別式をDとすると D> 0 たす ゆえに D=(-k)2-4(k+3)=k-4k-12 =(k+2)(k-6) > 0 したがって k<-2,6<h B) Point... 絶対不等式 A x D>0 例題 105 (1) では,与えられた不等式 x2+2kx-3k+40 から, 機械的に D> 0 とし てしまう誤りが多い。 3) 必ず「不等式の条件」 を 「グラフの条件」 に言い換えてから, 判別式の条件を考えるよ うにする。 105(1) すべての実数xについて, 2次不等式 x+kx+2k+50 が成り立つよ うな定数kの値の範囲を求めよ。 (2) 2次不等式 2x²-3kx+4k+2 <0 を満たす実数x が存在するような定数 んの値の範囲を求めよ。 191 p.220 問題105

解決済み 回答数: 1
1/1000