学年

教科

質問の種類

数学 高校生

ここはなぜn-1じゃなくてnなんでしょうか? 隣接三項間のp n+2〜p nじゃなくて p n+1〜p n-1 が関係してそうなのですが よく分かりません 誰か教えてください

492 重要 例題 52 確率と漸化式 (2) … 隣接3項間 座標平面上で,点P を次の規則に従って移動させる。 000 1個のさいころを投げ, 出た目をα とするとき, a≦2ならばx軸の正の方向 へαだけ移動させ, a≧3 ならばy軸の正の方向へ1だけ移動させる。 原点を出発点としてさいころを繰り返し投げ, 点P を順次移動させるとき、自然 数nに対し、点Pが点(n, 0) に至る確率をpm で表し, bo=1とする。 (1) + を py D-1で表せ 。 [類 福井医大 ] 基本 41.51 RECOR 出したA 40 それ を求めよ。 (2)が未玉を持つ 回作後までの でないかが問題と 回の操作後に、赤 操作による状態の変化 操作を回り返し 自然数nに対して、 (2) 求めよ。 指針 (1) P+1点Pが点(n+1,0)に至る確率。 点Pが点 (n+1, 0) に到達する直前の 状態を、次の排反事象 [1], [2] に分けて 考える。 [1] 1 6 pn Pa n-1 n n+1 [1] 点 (n, 0)にいて1の目が出る。 pn-1 [2] [2] (-10)にいて2の目が出る。 (2)(1) で導いた漸化式から" を求める。 (1) 点Pが点(n + 1, 0) に到達するには 解答 [1] 点 (n, 0) いて1の目が出る。 [2]点(-10)にいて2の目が出る。 Pa+1 X y軸方向には移動しない。 の2通りの場合があり, [1], [2] の事象は互いに排反で 点 (n, 0, (-10)に ある。 よって Pn+1= + 6 P+1+ Pn= Pn (2)①から persit/po=1/2(pet1/31) Dn+1 Pn=- 2 よって 1 PR+1+ Pn 3 1 1 Do CHART 確率の漸 いる確率はそれぞれ pn, pn-1 | 赤玉を持っている。 =1/2x+1/から 4x²== 6 6x2-x-1=0 持っていないことを A.B.Cの順に よってことにする。2回の (B)=(-1/11/12) Pn+1- =(-)-(-1 3 (12/12)とする。 p=1,p=1/2から Dn+1+ 30m=1 (1/2)+ Pn+1- n+1 = (2-3)÷ ・から 1\n+1 bn= 5 $6 A, B, COT 右のようになるから 26=1 2 22 4 A,B,C ているとき、 ④ 52 2 進むものとする。 このとき, ちょうど点nに到達する確率をn で表す。 ただし, 練習 硬貨を投げて数直線上を原点から正の向きに進む。 表が出れば1進み, 裏が出れば nは自然数とする。 (1) 2以上のnについて、Pu+1とPn, Pn-」 との関係式を求めよ。 (2) 求めよ。 出方によって、赤 は右のようになる a.t

回答募集中 回答数: 0
数学 高校生

この問題の場合分けで、右の写真(手書きのやつ)の場合がないのはなぜなのでしょうか。また、なぜ軸が0から4に入っているのですか?教えて欲しいです

例題 73 解の存在範囲(5) **** 2次方程式 x-2ax+4a-9=0 の異なる2つの実数解のうち, ただ1 つが0<x<4の範囲にあるような定数αの値の範囲を求めよ. 考え方 0<x<4の範囲にただ1つの解がある場合とは、次の①~④の場合である。 ①②はf(0), f (4) 異符号の場合であるから, f(0).f(4)<0 ① (2) ③④はそれぞれ f(0)=0,f(4)=0 のときであるが,このとき ⑤ ⑥の場合も考 えられる.しかし,⑤,⑥は0<x<4の範囲に解をもたないので、注意が必要である. 第2章 ⑥ 解答 x 48 x x 48 04 0 4 0 4 0 4 y=f(x)=x2-2ax+4a-9 とおく. (i) f(0).f(4)< 0 のとき 7 9 したがって, a4 (4a-9)(-4a+7) <0 (4a-9) (4a-7)>0 <a (ii) f(0)=0 のとき, 4α-9=0 より このとき,f(x)=0 の解は, x2.2x+4.0-9=0より、 9 a=- x=0.02 9 0, 2 f(x)=0 は 0<x<4 に解をもたないから, a=- は不適. (ii) f(4)=0 のとき, -4a+7=0 より a= 74 9-4 04 x 04 x -4a+7=-(4a-7) 不等号の向きが変わ る. (ii) f(0)=0 のときは, ③ではなく⑤の場 合になるので不適 である. (Ⅲ) f(4)=0 のときは, ④ ではなく ⑥の場 このとき,f(x) = 0 の解は, x-2.7x+4・7-9=0 より x=- 4 合になっている. 7 f(x)=0 は 0<x<4 に解をもたないから,a=7 は不適. よって、(1)~()より、求める範囲はa<7 / <a よって、(i)~ (ii)より, 求める範囲は, Focus 解αがp <α <g のときは, f(p), f(g) の符号を調べる

回答募集中 回答数: 0
1/1000