学年

教科

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0
数学 高校生

44の問題が意味がわかりません。解説お願いします

標準」レイ 吸う 向か が、入 ニチ にい 11 条件と集合 42 [命題の真偽] 次の命題の真偽を答えよ。 (1) x=1ならばx+x2=0である。 (2)|x|>3ならばx>3である。 であるための必要十分条件である。 01482- 次の(1)(2)(3)(4)のそれぞれについて の中に適する番号を入れよ。ただし、 (1)の解答は①ではない。 (1)①は (2) □は②であるための十分条件であるが必要条件でない。 (3) □は③であるための十分条件であるが必要条件でない。 (4) □は②であるための必要条件であるが十分条件でない。 12 必要条件と十分条件 43 [必要条件と十分条件] [必修 テスト 次 ただしx,yは実数とする。 に適するものを下の①~④から選べ。 ① 必要条件であるが十分条件でない。 ②十分条件であるが必要条件でない。 ③ 必要十分条件である。 ④ 必要条件でも十分条件でもない。 (1) x=1であることは, x=1であるための (2)xy であることは,xy"であるための (3) x=yであることは, kx=ky であるための (4)x+y>2 かつxy>1であることは,x>1かつy>1であるための [必要条件 十分条件 必要十分条件] 実数a, b について、 次の5つの条件がある。 ① ab=0 ② a-b=0 ③ |a-b|=|a+6| ④a²+b²=0 ⑤a²-b²=0 20 1章 数と式 6140 140 13 逆・対偶 45 [否定] 次の条件の否定をつくれ。 (1) x < 0 または y > 0 (2) x=2かつy=1 46 [逆・対偶の真偽] 目 テスト 次の命題の逆・対偶をつくり, その真偽を答えよ。 「x=1 ならばx=x」 (U) HINT 42 命題が真であることは真理集合の包含関係からわかる。 偽の場合は、反例をあげる。 C 43gの真偽をはっきりさせる。 必要条件と十分条件を正しく判断しよう。 Q 1-14 44 la-bl=la+blは両辺を平方してみる。 1-14 45 「かつ」の否定は「または」 「または」の否定は「かつ」に変わる。 1-15 46 対隅の真偽はもとの命題の真偽と一致する。 1-16 12

回答募集中 回答数: 0
1/49