学年

教科

質問の種類

数学 中学生

この問題が分かりません、答えもついてます。お願いします🙏

作図できるよ。」 証明したよ。」 〇中心になるんだ 用いられている 返りました。 X. R Y 二等分線で C (3) さらに,航平さんは、コンピュータを使ってAABCの3つの辺に接する円をかき、下の図 のように、辺BCをそのままにして点Aを動かし, ABCをいろいろな形の三角形に変え、 いつでも成り立ちそうなことがらについて調べました。 DONECO+ B B D D E E C C 航平さんは、下の図のように, ∠BAC の大きさを、鋭角、直角、鈍角と変化させたときの △DEFに着目しました。 ∠BACが鋭角のとき SONICO+ ∠BAC が直角のとき B D B E D C C B ∠BAC が鈍角のとき C 航平さんは、 △ABCがどのような三角形でも, △DEFが鋭角三角形になるのではない だろうかと考え,それがいつでも成り立つことを,下のように説明しました。 【航平さんの説明】 オ ∠BAC = ∠x とするとき, <FDE を, ∠x を用いて表すと, ∠FDE = ゜より大きく キ° より小さいことが と表せる。 これより, ∠FDE は,カ いえるから、鋭角である。 同じようにして,∠DEF, ∠EFD も鋭角である。よって、 △ABCがどのような三角形でも,△DEFは鋭角三角形になる。 【航平さんの説明】のオに当てはまる式を, ∠x を用いて表しなさい。 また、 キ に当てはまる数をそれぞれ求めなさい。 カ

回答募集中 回答数: 0
数学 中学生

(2)の仕組みが分かりません。教えてください🙏答えは144です。

解答・解説 別冊P.84 いろいろな知識を活用する問題です。 基礎がマスターできたら、活用できるかをためそう。 ? 思考 ABCD・・・・・・のいくつかの駅があり、快速電車の走らせ方を 検討している。 快速電車とは、各駅停車であってもよく、また途中か ら各駅停車となった場合や途中まで各駅停車となった場合も、快速電 車と見なすことにする。 さらに、快速電車は始発駅のA駅から終着駅 まで行くとき、 途中のどの駅を通過してもよいが、連続する2つ以上 の駅を通過してはならないものとする。 これについて、以下の問いに 答えなさい。 (専修大学附属高) ABCDE WA-B-C→D→E A-B ④A→B→C [図] -D-E E (1) 図の①~④はE駅が終着駅の場合の快速電車の走り方の例を示している。 図において、あと1通りの快速電車の走らせ方がある。 例にならってそれを書きなさい。 (2) 図で駅の数を少なくして, ABCの3駅の場合やABCDの4駅の場合、 また、駅の数を 増やして ABCDEFの6駅の場合について同じ条件で快速電車の走らせ方を考え、5駅 の場合も含めて相互の関係を見出してください。 すると, ABC..... JKの11駅の場合の快速電車の走らせ方は, 89通りあることがわ さて、これにさらにL駅を終着駅として加えた12駅の場合、快速電車の走らせ方は 何通りありますか。 (3) (2) で途中のG駅が通過駅になる快速電車の走らせ方は何通りありますか。 データの活用編 3 場合の数

回答募集中 回答数: 0
数学 中学生

赤線🎈の所が分かりません💦かけるのかなって思ったのですが どうゆう事ですか?解説お願いします🙇‍♀️ プラスでどうやって解くのかも教えて欲しいです(この問題全体の)

(8 (エ) 右の図①のように, 求める線分が対応する辺になるような相似な三角 形をつくって考えてみます。 辺BAの延長と線分FEの延長との交点をP, DCの延長と線分 EFの延長との交点をQとします。 まず,点Eは辺ADの中点であるから AE:ED = 1:1,BF:FC=3:1 より FC=①とすると, BF=③, AD=BCであるから, AE=ED=② と表されます。 また, CG: GD=2:1よりCG=2 とすると,GD= 1. CD = AB であるから, AB=3 と表されます。 次に, △PAEと△PBF において, 共通な角より, APE=∠BPF・・・・ ①, AD//BCより, AE//BF であり,平行線の同位角は等しいから, <PAE=∠PBF... ②, よって, ①, ②より2組の角がそれぞれ等しいから, PAESPBF であり,相似 比は AE: BF =②:③であるから, PA: PB=2:3,AB= 3 より PA 6 PB=9と表せることがわかります。 同様に、△QCF △ QDEであるから, CF : DE = 1: 2 より QC:QD=1:2, CD=3であるから QC=3と表 せることがわかります。 さらに, △PBH と △QGH において, 対頂角は等しいから,∠PHB=∠QHG・・・・ ③. AB//DC より PB//GQ であり, 平行線の錯角は等しいから,∠PBH=∠QGH・・・ ④ よって, ③, ④より. 2組の角がそれぞ れ等しいから, PBH △QGH であり, PB=9QG=QC+CG=3 +2=5 より,相似比はPB : QG = 9:5が わかります。 よって, BH: HG = 9:5 と求められます。 〔別解〕 右の図のように, 辺ADの延長と線分BGの延長と の交点をPとして考えてみます。 △BCG と△PDG において, 対頂角は等しいから<CGB= 図② 図① B 13 A E /H F 1 ○ H 2 P N G 2 2 G

回答募集中 回答数: 0