学年

教科

質問の種類

数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 中学生

(3)を教えてください🙇🏻‍♀️

△ABCにおいて, 点Dは辺 AC上にあり, 線分BD は∠ABC の二等分線である。 D を通り、辺BCに平行な直線と辺ABの交点をEとする。 また,点Eを通り,辺 ACに平行な直線と辺BCとの交点を Fとする。 次の各問いに答えなさい。 (1) BE = CF となることを次のように証明した。 B アー E 英 F クにあてはまる最も適当な語句をあとの [語群] からそれぞれ選び, 記号で答えなさい。 お,同じ記号を繰り返し用いてもよいものとする。 ア( ク( (証明) ) ( )ウ()エ(1)オ()カキ( 線分 BD が∠ABC を2等分することから,∠ア=∠イ 00 ED / BCよりゥので,∠ア = ∠EDB 1 リン A も ま (1 エであるから, BE = ここで, △EBD は また EDカ FC EFカ DC より, キ □ので、四角形 EFCDはク B である。 ゆえにオ=CF......② 以上, ① ② より BE = CF (証明終わり) [語群] あ. AB い BC う. CA. DE お. EF か ABC き BCA く. CAB 1. AED こ. ADE さ. ABD L. DBC . EDB せ. EFB そ. DEF た.= ち と な. 正三角形 に直角三角形 ぬ. 二等辺三角形 ね. 平行四辺形 は 錯角が等しい ひ. 同位角が等しい ふ. 対頂角が等しい の台形 へ 3組の辺がそれぞれ等しい ほ. 2組の辺とその間の角がそれぞれ等しい 1組の辺とその両端の角がそれぞれ等しい 2組の対辺がそれぞれ平行である む. 2組の対辺がそれぞれ等しい 2組の対角がそれぞれ等しい も 対角線がそれぞれの中点で交わる や 1組の対辺が平行で, その長さが等しい (2) EBDとEFCの面積比を最も簡単な整数比で答えなさい。 ( ) (3) ABCをBABC の二等辺三角形とする。 △ABCに外接する円をかき BDの延長と円周 の交点を P とし,∠APC = 148° のとき,次の角の大きさを,それぞれ求めなさい。 ① ∠PCA ( ) 2 ∠BAC ( DC (2

未解決 回答数: 1