学年

教科

質問の種類

数学 高校生

紫で線を引いたところがどうやって出てくるのか分かりません。

13 三角関数の最大・最小 ⑨ 三角関数の最大・最小 例えばysin 20-2sin0+3 では、三角関数の最大・最小 sin0tとおき、2次関数y=-21+3の1の変域での最大・最 小を考える。 133 発展例題 三角関数の最大・最小 1 さい では -15sinė≤1 -Iscos@SICES. なお、tanoはすべて 実数値をとることが できる。 [基本][標準] [発展] 次の関数の最大値および最小値を求めよ。また,そのときの0の値を求めよ。 y=2sin(20. π 3 π +1 ++ 0S-> 第 3章 三角関数 20 着眼 と置き換え、まずsintのとり得る値の範囲を単位 コーチ 円を利用して求める。 ●次のように変形している。 200'sin(-70°) E 5 解答から π π 4 3 π 20- 3 =tとおくと1/30 π 4 075520-20 VA π π 3 5 π 220-13 このとき, 右の図より 1-2 4-3 1 2 70 'S 6 x √√3 - 5 π 3-3 sint≦1 → 1 その π π 5 すなわち 20- = 0= π 3 2 1-√3 ≦2sint+1≦3 → 最大となるのは, sint=1より=のとき 122回(2012ssints1 O 4 ≤20-* 2 0243 sints/2とする 2 違いが多いので注意。 次のように変形している。 12番小泉 √3 -sint≤1 √3 4 最小となるのは, sint= よりのとき 2 -√3≤2sint≤2 -√3+1≦2sint+1 すなわち 20-431-13-1/2 π 5 ≦2+1 = π ==π Meoa6ries v 1-3≤2sint+1≤3 5 = 最大値3 (01/27) 最小値100

回答募集中 回答数: 0
数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
1/760