学年

教科

質問の種類

数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
数学 高校生

この問題の解説をしてくださる方いらっしゃいませんか、?🙇‍♂️

このとき, 128 統計的仮説検定 ある市の市長選挙にちの人が立候補した。投票において、白頭や無効票はないもの とする。このとき, どちらかの候補の得票率が50%より多いと, 当選となる この選挙において、投票所における出口調査で、無作為に選んだ 400人のうち, 230 人が A に投票したという結果が出た。やれる このことから, Aが当選確実かどうかを有意水準 5%で仮説検定をする。 まず帰無仮説は「Aの得票率が ア 」であり、対立仮説は「Aの得票率が イ 」で の標本平 ある。 その標 次に,帰無仮説が正しいとすると,大きさ400の標本における比率に対し、標準化した確 変数は, 分布と統計的推測 であり、これ ある。 X=6 「A.B の 0.5である やすいと この 50 れる」 片側 か き po- z= エ Bにど 改) となり,これが標準正規分布に近似的に従う。 今回の出口調査の結果から求めたZの値を20とすると,標準正規分布において確率 P(Z≧zo) の値は0.05よりも オ ので,有意水準5%で, Aは当選確実と カ ア イ の解答群(同じものを繰り返し選んでもよい。) 230 400 である 230 400 ではない 230 400 230 より大きい より小さい 400 ④ 0.5である 0.5ではない 0.5より大きい 0.5 より小さい ウ エ の解答群 (同じものを繰り返し選んでもよい。) 1 1 1 0 400 200 40 20 2 ⑦ 4 20 40 オ |の解答群 ⑩ 大きい ① 小さい カ |の解答群 ⑩いえる ①いえない 14 SI 12 アイウエオカ 520

回答募集中 回答数: 0
数学 高校生

〰️引いてるところが理解できません!!! (問題の「カ」のところです) どのように考えたらいいのでしょうか?

練習問題 107 母平均の仮説検定 ある工場で作られたジュースの容量は1800.0mL と表示されている。このジュース400本を無作為に抽出しジュースの容量を 計測したところ、平均は1796.7mL,標準偏差は 26.4mLであった。 太郎さんと花子さんは,この調査の結果からジュースの 容量は表示通りではないといえるかどうかを有意水準5%で両側検定しようとしている。 花子:この工場で作られたジュースの容量を X (mL), Xの平均をM (mL) とし,アをM=1800.0 である とします。 太郎:400は十分大きいから、標本の大きさ400の標本平均 X は,平均イ,標準偏差 ウの正規分布に近 似的に従います。 よって, Z= 花子:M = 1800.0 という仮説について両側検定するから,X≦1796.7 または X ≧ カ とおくと,Zは標準正規分布 N (0, 1)に従うと見なせます。 となる確率の値を 求めます。 正規分布表を利用すると、かの値は 0. キクケコとなり,サ 0.05 が成り立つので、 アはシ。よって、この標本調査の結果からジュースの容量はスコ 太郎:その通りです。また,棄却域を考えることによって検定することもできます。 正規分布表から P(-セソタ Z≦ センタ = 0.95であるから,有意水準 5% の棄却域は Zsセソタ セソタ Zとなります。 X = 1796.7 のときチツテトとなり、この値は棄却域に ナから, ア は よって,この標本調査の結果からジュースの容量は スという結論を得ることができます。 の解答群 ⑩ 帰無仮説 ① 対立仮説 |の解答群(同じものを繰り返し選んでもよい。) sera (0 0.066 ① 0.05 ⑤ 1773.6 ⑥ 1796.7 (2) 1.32 ⑦ 1800.0 6.60 ④ 26.4 ⑧ 1803.3 1826.4 サ の解答群 heen -20 18T2.0= (7.0) as ① < |の解答群 (0) ⑩ 棄却される ① 棄却されない。 スの解答群 FLO () 30 TO.0-(m ⑩表示通りではないといえる の解答群 ⑩ 含まれる 11.0 (0) S (1) 0.0 = (2X)9(n) 分散 ① 表示通りではないとはいえない ①含まれない 0000 とせよ 代 (n)=(2120)

回答募集中 回答数: 0
数学 高校生

この問題の(チ)がどうして②じゃなくて③なのかイマイチ分かりません。 解説お願いします! 書いてある計算とか無視してください

(2) A高校では,この調査の結果を受け,スマートフォンを利用する時間を見直 す取り組みを実施した。 この取り組みを開始してから2年後に,A高校の全校 生徒から生徒400人を無作為に抽出して、前回と同じアンケート調査を行った。 この2回目のアンケートの結果,1人の生徒が1日にスマートフォンでインター ネットを利用する時間は、平均が234分,標準偏差が25分であった。 標本の大きさは400と十分に大きいので、標本の標準偏差を母標準偏差とみな して, A 高校の全校生徒の平均が前回の調査結果である237 分と差があるとい えるかどうかを有意水準 5% で検定する。 まず帰無仮説を「A高校の全校生徒の平均は, タ 。」 とする。 A高校の生徒400人を無作為に抽出したとき 1日にスマートフォンでインター ネットを利用する時間 Yの平均をY とする。 帰無仮説が正しいとすると, 標本 の大きさは400と十分に大きいので, 確率変数 Y は近似的に正規分布に従う。 したがって Z= チュ x-m とすると、確率変数 Z1は近似的に標準正規分布 N(0, 1)に従う。 このとき,棄却域は 25 <ツテト ナニ 239.45 < Y 2-54 であるので,帰無仮説は 〇 これより,A高校の全校生徒の平均は ネ ネ 2370 2,4 23455 239.45 237 2347 2.45 2.39.45 239.41 23445-234 45

回答募集中 回答数: 0
1/2