学年

教科

質問の種類

数学 高校生

三角形OACの高さについてです。 オレンジ色で波線が書いてあるところがわかりません。 なぜ2sinθ=-sin(120°-θ)ではないのですか。

から また、0<x2a<πであるから 数学Ⅱ 153 << 2 えに、<cosa <1の範囲において、Rはcosa= のとき最大値 2/23 をとる。 ←y< 1 X3 58 2 すなわち a= ←△ABC は正三角形。 <y-x<2 200 72 <y-x < 0 2 練習 162 0を原点とする座標平面上に点A(-3, 0) をとり, 0°0 <120°の範囲にある0に対して,次の 条件(a), (b) を満たす2点 B, Cを考える。 a) Bはy>0の部分にあり, OB=2かつくAOB=180°-0である。 (b)Cy<0の部分にあり,OC=1かつくBOC=120°である。 ただし, △ABCは0を含 むものとする。 (1) AOAB と AOACの面積が等しいとき、0の値を求めよ。 20°<<120°の範囲で動かすとき,△OAB と AOACの面積の和の最大値と,そのとき のsin0 の値を求めよ。 △OAB と △OAC はOA を共 有するから,OAB と AOACの 面積が等しいとき,それぞれの高さ が等しい。 ここで,条件から,動径 OBとx軸の正の向きとのなす角は 180°(180°-0)=0 △OAB の高さは 2 sin 0 2sin=sin(120°-Q)... √3 y B A 180°-6 A x -3 0 120° C △OACの高さは sin(120°-0) ゆえに 1 よって 2sin0= cos 0+ 0+1/2 sin 2 ゆえに 3 sin 0=√3 cos 0 8=90° は ① を満たさないから 0=90° ②の両辺を cose で割って tan0= √3 0°<< 120° であるから 0=30° 〔東京大〕 ←OBsin0 [ ←OCsin (120°-0) X3 (1) E8 ←①の右辺に加法定理 を用いた。 ←6=90° を ① に代入す ると 2sin90°=sin30° これは不合理。 803 4章 練習 章 [三角関数] [同志社大 ] 弐。 給 から, 定。 (2) AOAB と AOACの面積の和をSとすると √√3 S=-3(2 sin0+ cos 0+ =3.2/7 2 -coso+ 1/23sine) = 2424 (5sino+√3 cose) ・2√7 sin(0+α)=3√7 -sin (0+α) 2 ただしsina= √21 5√7 COS α= (0°<a<90°) " 14 14 ① 0°0<120°0°<α <90° より、0°<0+α<210° であるから, この範囲において, Sは0+α=90° のとき最大となり,そのes osa 最大値は 3√7 -sin90°= ..1= 37370 2 2 2 また、+α=90°のとき 5√7 sin=sin(90°-α)=cosa= 140-D >820 -Qua ←三角関数の合成。 の値を具体的に求め られないときは左のよ うな「ただし書きを忘 れないように。 miaa

未解決 回答数: 2
数学 高校生

2枚目の四角の部分はどうやって数字を求められましたか?

B2 三角関数(20点) OはTOMを満たすとする。xについての2次方程式 2x2-2 (sin0+cos0)x+sin200 ...... ① を考える。 (1)のとき、 2次方程式 ① を解け。 (2) 2次方程式①の解について, 太郎さんと花子さんが話している。 太郎: 2次方程式 ① の解はどうなるのかな? 花子: 2倍角の公式より, sin20= だから、①の左辺を因数分解して解を求め ることができるね。①の2つの解をα,β(a<B) とすると,0ぇだから (+) ( a = (イ) B = (ウ) となるね。 太郎が変化するとき、2つの解の差 B-αの値はどうなるのかな。 完答へ 道のり (2) (i) 2 花子: t=β-α とおくと, t= (エ) sin (0- sin(0- (オ) と変形できるね。 (ii) この式を用いると、のとき,tのとり得る値の範囲は (カ) とわか るよ。 (i) (ア) ~ (ウ) に当てはまるものを、次の1~7のうちから一つずつ選び、番号 で答えよ。 ただし、 同じものを繰り返し選んでもよい。 1 sin 22sin0 3 cos 4 2 cos 0 5 sincos0 62sincose 7 cos-sin 20 (ii) (エ) に当てはまる数を答えよ。 また, (オ) に当てはまるものを、次の1~7 ( のうちから一つ選び、 番号で答えよ。 π 1 2 π 3 TC 4 π 2 6 3 6 4TT 7 ST 6' (カ) に当てはまるもの値の範囲を答えよ。 ただし、解答欄には答えのみ記入せよ。 配点 (1) 6点 (2)3点(イ) 1点 (ウ) 1点 (エ)(オ) 3点 (完解) (カ) 6点 解答 (1) 2x2-2 (sin+cos 0)x+ sin 20 = 0 =1のとき、①は 2x2-5 2-2(sin+cos)x+ sin x = 0 42- sino=1. cos=0, sin 完 道の

未解決 回答数: 1
数学 高校生

ここの2番の書いてある意味がわからないので,一つ一つ教えて欲しいです。

重要 xy 例題 21 内積を利用したux+vy の最大・最小問題 00000 平面上に点A(2,3)をとり、更に単位円x2+y2=1上に点P(x, y) をと る。また、原点を0とする。 2つのベクトル OA, OP のなす角を0とすると き内積 OA・OPを0のみで表せ。 (2) 実数x, y が条件 x +y2=1 を満たすとき, 2x+3yの最大値、最小値を求め 指針 [愛知教育大 〕 (1)Pは原点Oを中心とする半径1の円 (単位円) 上の点であるから |OP|=1 (2) (1)は(2)のヒント A(2,3),P(x, y) に注目すると 2 x +3y = OA・OP かくれた条件-1≦cos 0≦1 を利用して, OA・OPの最大・最小を考える。 基本11 1 章 3 ベクトルの内積 解答 OA・OP=|OA||OP|cose =√13cose (2)x2+y=1 を満たす x,y に | (1) |OA| =√22+32 = √13, |OP|=1から YA A(2,3) 内積の定義に従って計算。 対し, OP = (x,y) DA = (2,3) として2つのベ クトル OA, OP のなす角を とすると, (1) から -10 1 x 2x+3y=OA・OP=√13cos 200 20°180°より, -1≦cos≦1であるから, 2x+3y の 0=0°のとき最大, 最大値は 13 最小値は13 0=180°のとき最小。 |-|OA||OP|SOA・OP k 別解 1. 2x+3y=kとおくと 2 y= -x 3 3 Fonie |OA||OP| これをx2+y2=1 に代入し, 整理すると 13x24kx+k2-9=0 ...... ① から求めてもよい (p.612 重要例題 19 (1) 参照)。 20 xは実数であるから, xの2次方程式 ① の判別式をD xは実数であるから,x とすると D≧0 D =(-2k-13(k-9)=-9(k-13) であるから k2≦13 よって√13≦k≦√13 別解2. (x,y)= (cos 0, sin01) と表されるから 2次方程式が実数解を もつ 実数解⇔ D≧ (数学Ⅰ)である 三角関数の合成 ( 数学II) 2x+3y=2cos01+3sinA=√22+32sin(01+α)=√13sin(01+α) 3 2 ただし COS α= √13 sina= √13 1main (+α) ≦1であるから -√13≦2x+3y≦√130°≦0,<360° 2 =2を満たすとき, ax + by

未解決 回答数: 1
1/48