学年

教科

質問の種類

物理 高校生

教えてください💦

教科書 No.2 物理基礎 PP.34 ~ 73 答えはすべて解答欄に書きなさい。 [1] 次の問いに答えなさい。 (1)力の3要素のうち,カの大きさ, 力の向き以外のあと1つは何か。 (P.35参照) (2) ばねを伸ばしたときの弾性力の大きさは、自然長からの伸びに比例するという法則を何の法則と呼ぶ か。 (P.41 参照) (3) 物体が,現在の運動状態を維持し続ける性質を何というか。 (P.42 参照) (4) 物体の質量がm,生じる加速度がα, はたらく力がFのとき,運動方程式は文字式でどのように表さ れるか。 (P.48 参照) (5)地球上で質量 50kg の人にはたらく重力の大きさは何 N か。 ただし、重力加速度の大きさは 9.8 m/s2である。 (P.49 参照) (6)自然長 0.10m のばねを,大きさ 2.0Nの力で引くと0.12mになった。このばねのばね定数はいくら か。 (P.41 参照) (7) 質量 1.0kg の台車に,次の図のように力を加えた。このときに生じる加速度の大きさを求めなさい。 8.0 N (P.48 参照) 2.0N [2] 力について,次の問いに答えなさい。 (1)次の①~④の力の名称として最も適切なものを,あとの語群から 1 つずつ選び、記号で答えなさい。 (P.35 参照 ) NO ④ [群] A. 弾性力 E. 張力 B. 浮力 F. C. 摩擦力 D. 空気の抵抗力 G. 垂直抗力 H. 静電気力 No.2-1

回答募集中 回答数: 0
数学 高校生

帝京大学2024年度総合型選抜の過去問です。 誰かに解説して頂きたいです。

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 01-04-20 (1) (1) 6x + 13xy +6y-16x-9y-6= ア x+ イ ウエ x+ オ Ly+ 〔3〕 △ABCについて, sin A sin B sin C √7 が成り立っている。このとき. ア cos C= である。またこの△ABCの面積が1/3であるとき イ AB= ウ (2)実数a, b は,a-b=8,ab=4を満たす。 んだ とすると, (△BCD の面積) (△ACDの面積) I である。 さらに, ∠BCAの2等分線と線分AB との交点をD オ 3であり. このとき,+b= キクである。また,'+6= ケ コ である。 AD = カ キ CD = ク ケ である。 (3) x+yv3=2+√3 を満たす有理数x,yは,x= x+√3 サシ . y= スセである。 he a (3) 2. [2] (1)αを定数とする。 xの2次関数y=x-4ax-a+10q...... ① がある。 (i) ① のグラフは,a = ア のとき, 点 (1,10) を通る。 (ii) ①のグラフの頂点のy座標をm (a) とするとき m (a) カ である。 表される。 m (a) の最大値は イウ + エオα と 〔4〕 e ウ (1) 2次方程式 5x +28x-12=0の解は,アイ である。 I (2) αを定数とする。 - 8x +15≦0を満たすすべてのxが, 不等式x+ax +7≦0を オカキ 満たすときのとり得る値の範囲は, a≦ ク である。 (2)2辺がxとyの長方形の周の長さは20, 面積は16以上24以下である(ただし, ク である。 xyとする)。この長方形のxの範囲は, キ ≤ x ≤ (3) αを定数とする。 xの2次方程式(x+1)+α(x+2)+15=0が重解をもつαの値は, <サシとする。 サシである。ただし,ケコ ケコ VIDOR © NEWED 20 9月の スゲールは

未解決 回答数: 0
物理 高校生

⑶の問題でなんでマーカーの部分の式をかけるのか教えてほしいです!!!

し 秒 [15] 【センターより】 音波に関する次の文章を読み、下の問い ((1)~(3)) に答えよ。 音のドップラー効果について考える。 音源、観測者。 反射板はすべて一直線上に位置し ているものとし、空気中の音の速さはVとする。また、風は吹いていないものとする。 (1)次の文章中の空アイに入れる語句と式の組合せとして最も適当なもの を,下の①~④のうちから1つ選べ。 図1のように、静止している振動数の音源へ向かって、観測者が速さで移動 している。このとき、観測者に聞こえる音の振動数はア音源から観測者へ向か う音波の波長はイである。 音源 ア ①よりも小さく ②よりも小さく イ V-v fi V チェ V2 よりも小さく J (V+v)fi V-v ④ と等しく fi V @ と等しく V2 と等しく (V+v)fi V-v 0よりも大きく f₁ V よりも大きく f₁ V2 よりも大きく 観測者 (V+v)fi (2) 図2のように, 静止している観測者へ向かって, 振動数の音源が速さで移動 している。 音源から観測者へ向かう音波の波長を表す式として正しいものを、下の ①~⑤のうちから1つ選べ。 =2 ① √2 観測者 図 2 V-v [③] V+v V² ④ (V-v\/ 音源 f2 V² (V+0)f2 (3) 図3のように, 静止している振動数の音源へ向かって, 反射板を速さで動か した。 音源の背後で静止している観測者は, 反射板で反射した音を聞いた。 その音の 振動数はf であった。 反射板の速さを表す式として正しいものを,下の①~⑧ のうちから1つ選べ。 3 観測者 音源 反射板 ① 113-114 ⑤ fs-fiy fath V 図 3 ② fatfav③ チューナ ⑥ fs ④ h-hy チュ 近

未解決 回答数: 1
数学 高校生

数2の質問です! 172のsinθ、cosθ=0 の時に どのようにしてといているのかを 分かりやすく説明してほしいです!! よろしくおねがいします🙇🏻‍♀️՞

テーマ 40円 千乃の 円奴の他 = 1/3 のとき, cos2a, sin a cos- <α<л, sinα= 2 え方 解答 の値を求めよ。 (4) cos2α を求めるには, sina, cosαのいずれかの値がわかればよい。 sin 2 を求めるには, sinα, cosαの両方の値が必要である。 2 cos2a=1-2sinq=1-2×(1/3) - 7 25 <α <πであるから cosa<0 1- 3-5 2 よって cosα=-√1-sin'α=- したがって sin2a=2sinacosa=2x- 2× ×(-3)=-24 25 sin a 2 1/4であるから よって sin√√ 13 172(1) 左辺を変形すると 整理すると よって sincos したがって、ソは sin >0 5 3" =1/3で最大値2.x 2 √13 をとる。 あるから Ry=2sin(x+1/x) (0≦x y=2sinx (0≦x<2m) gだけ平行移動し 下の図の実線部分のよ sin sin 0 (2cos 0-1)=0 a COS 2. 2 1+cosa 2 5 a <であるから COS ->0 4 2 2 よってco8/1/2=1/15 √5 a COS 12 □ 練習 171 0<a< で, sina=- 13 そのとき,次の値を求めよ。 (1) cos 2a (2) sin2a a (3) cos (4) sin 2 答 第4章:三角関数 sin0=0 または cost=- 002 のとき,! sin0=0から - coso=1から 10=0,π y1 12 Jar + 0 = 5 2 3' 3 6 5 したがって 0=0, 3π, (2) 左辺を変形すると 74 2sinx+3cos 整理すると 左辺を因数分解すると (2cos20-1)-3cos0-1 = 0 sin a= 2cos20-3cos 0-2=0 ただし 3 √13 (cos 0-2)(2cos 0 +1)=0 0≦x<2 より 72 cos であるから よって cose-2 よって 2cos +1=0 したがって 166 すなわち cos 0=-- 175(1) 左辺 応用 2 10号 2-3 テーマ 78 2倍角の公式と方程式 0≦02 のとき, 方程式 sin20=√3cose を解け。 考え方 2倍角の公式を利用して, 方程式を AB=0 の形にする。 解答 左辺を変形すると 173 √ 2sincos0=√3cose ←共通の式 cosが現れる。 から 整理すると cos (2sin0-√3)=0 よって cos0=0または sin0= 2 002のとき, から cos00から π 0=- 2'2 したがって 0=- π π, 3 2' [練習 172 3|22|3 22 √ π 2 ・π sin0= -から=1 2 3' 3" よって 32 笑 πC 002のとき, 次の方程式を解け。 (1) sin20=sin0 (2) cos 20-3cos0-1=0 002の範囲で解くと10 5 x+1)である −V3sin x+cosx=2sin x+ y=2sinx+ 51-1 5 17 xx+1である 5 -15 sin(x+7) Sl -2≤y≤2 また,sin(x+1)--1のとき 5 3 T= TC ゆえに x=ga sin(x+1)=1のとき 0nie 5 +5 x+ = 6 5 ゆえに x=g 複数の上 よって 0≤x< この範 した (2) 2

回答募集中 回答数: 0