学年

教科

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
物理 高校生

(1)についてなのですが何故地表との圧力と風船内の圧力が同じになっているのかが分からないです。 教えて頂きたいです。よろしくお願いいたします。

2倍 6/23 面 で、 EP 132 熱 45 気体の法則 熱気球がある。 下端に小さな開口部があって、 内部の空気を外気と等しい圧力にしている。ヒ ーターにより内部の空気の温度を調節すること ができる。 風船部の体積をV=500〔m²〕(ゴン ドラの体積は無視), 気球全体の質量を W= 180 [kg] とする (内部の空気は含めない)。 地表 での大気圧を Po=1.00×10〔Pa〕,密度を po= 1.20 [kg/m²] とする。 大気は理想気体とし、温 度はT=280〔K] で高度によらず一定とする。 45 気体の法則 浮力 133 排除した V m = pV と表されるから」 00 Vg = (oV) g+Wg = 1.20×500-180 500 LECTURE 内部の空気の質量mは m (1) 風船部 力のつり合いより p = 00V-W = 0.840 〔kg/m²] 外気について: 内部の空気について: ゴンドラ T₁ = 0 To == (1) 気球を地面から浮上させるには,内部の空気の密度をどこまで下 げることが必要か。 また,そのためには何Kまで熱することが必要 か。その密度 p〔kg/m3] と温度 T1 [K] を求めよ。 (2)内部の空気の温度を上記のに保って、ゴンドラ内の積荷をw (=18〔kg〕だけ軽くした。気球は上昇し,ある高度で静止するはずで ある。その高度における大気の密度 p1 〔kg/m3〕 を求めよ。 (3)その高度における大気圧 P1 [Pa〕 を求めよ。 (4) その高度は次のいずれの値に最も近いか。 より Po=RTo P Po=RT..... 1.20 0.840 D V P mg ......① To P X280 = 400 (K) Wg 3 浮力が増して浮くの ではない! 内部の空気の重さ mg を減らして浮く。 (2) 気球の外部, 内部の空気について P₁ =RT.......3 外部: M 内部: P1= é M RT………④ ④ より To (3 0=101 力のつり合いより piVg=(p'V)g+(W-w)g 上の を代入して, p1 を求めると T₁(W-w) 400 × (180-18) 500X (400-280) = 浮力 Vg 0' T 01 V(T1 To) =1.08 (kg/m³) m'g P1 100m,300m,500m,700m, 900m, 1100m (東京大) (3)外気についての①、③に着目し、 とすると To 02)x S.NX 00S 02) x 08- 1.08 R 1.20 (W-w)g Level (1)~(4)★ Base of 理想気体 状態方程式 大気の上端 気体定数 [ J/mol・K] この部分 この部分 重さ P の重さ P Point & Hint 力のつり 合いでは, 風船部内にある空気 の重力を忘れないこと。 状態方 程式は, 1モルの質量をM,密 度をpとしてP=RT と 表せる(気体の質量をと すると,n=m/M=pVM)。密 度を扱う場合はこの形が便利。 PV=nRT- 圧力 体積物質量 絶対温度 〔P〕= [N/m2〕 〔3〕 [mol] [K] ※T[K] = 273 + t[°C] [LOOST-SI ※nはモル数ともよばれ,分子数をNとす ると, n = NINA (NAはアボガドロ定数) (4)ある高さでの大気の圧力は、それより上空にある空気の重さ(正確には、単位 面積あたりの重さ)に等しい。 P₁ = 0₁ Po== · x 1.00 × 105 = 900×10'[Pa〕 Po (4) 地上から高さんまでの空気について,平均密 度はおよそ (po +p1)/2であり, 1m² あたりの 重力 (重さ) は Po-P, に等しいから 00+01. hg = Po-P₁ ふん≒ 2 2(Po-Pi)_2(1.00 -0.900)×105 (po+01)g (1.20 +1.08) x 9.8 ≒895≒900[m] 1m² 地上 pihg < Po-Pi < pohg と不等式にしてい 850くん <945 となる。

回答募集中 回答数: 0