学年

教科

質問の種類

数学 高校生

数C複素数平面で質問です (1)で|-i|=1となる理由がわからないです おしえてください

C2-16 (364) 第5章 複素数平面 例題 C2.8 複素数の絶対値(2) 複素数 z が z=-i を満たすとき,次の問いに答えよ. (1)|z|の値を求めよ. (2)|z+2i|2+2zi の値を求めよ. 考え方 (1) ||=|-i|より, | 解答 ||=| ||=1 |2|-1=(|z|-1)(|z|'+|z|+|z|+|z|+1)と変形する. M (2)|z+2i=(z+2i(z+2i)=(z+2i)(z-2il |2z-i|2=(2z-i) (2z-i)=(2z-i) (2z+i) これと (1) を利用する. (1)より,|2°|=|-il [=||=|8||=|0 |-i|=1であるから,||=1 ||=1 したがって, |z|-1=(|z|-1)(|2|+|2|3|2|+|z|+1)=0 |2|+|2|3|2|+|z|+1>0 **** 2=-iの両辺の絶 対値をとる. |z|-1=0 または |z|*+|z|+|2|+|2|+1=|| ここで, z|≧0 より よって, ||=1 (2) z+2i|2=(z+2i)(z+2i) |x|2=zz =(z+2i)(z-2i)=zz2iz+2iz+4 |2z-i|= (2z-i) (2z-i |z+2i|+|2z-i|=5(1+1)=108ntorr 注》 複素数平面上の図形 (p. C2-52~) では、 右の図の点P(z)は|z|=1 より単位円周上の点|z+2i|=|z-(-2i)はP(z) A(-2i) =(2z-i) (2z+i)=4zz+2iz-2iz+1 よって,z+2i2+2z-i=5(zz+1) ここで,zz=|z|=1 より ++8= to (1)より,|z|=1 距離である. との距離 12z-i=22-122-212はP(2)とB はP(z)とB(1/2)との B 112 Y&/0/+8+ よって,|z +2i2+|2z-i|=PA'+4PB2 となる.+a+b1 では,幾何を用い PA'+4PB'=10 となることを証明する. 単位円と虚軸との交点をC(i), D(-i) とすると,Pが虚軸上の 点でないとき,△POAにおいて中線定理 (パップスの定理) から, PA'+PO'=2(PD'+DO') D(-i)-1 A(-2 PO=DO=1より PA'=2PD'+1 …① 同様に,△PCO において,PC2+PO'=2(PB'+BO^) が得られ, PO=1, BO=123 より 2PB=PC'+ ① ② より PA² Ann? 2

解決済み 回答数: 1
化学 高校生

️⭕️の数字は何で決まるんですか?

式はCxHyOz となる。 質量組成値が与えられた場合 C. A [%] HB[%] O…100-(A+B)[%] C:HO=112 A B 100- (A+B) : 1.0 16 =x:yiz (整数比) 式の決定 4,02)n=(組成式の式量)×n=(分子量)からnを求め,分子式 CnxHnyOnz とす 式の決定 化合物の性質から官能基を決定し,価標の数に留意して構造式を 価標の数: C... 4, H... 1, 0…2, N...3, C ・・・1 生体 分子式は同じであるが,構造や性質の異なる化合物。 異性体 炭素原子の骨格, 官能基の種類, 置換基の結合位置が異なる異性体 CH3-CH2-CH2-CH3 CH3-CH-CH3 C4H10 ブタン CH3 2-メチルプロパン C2H6O CH3-CH2-OH エタノール CH3-O-CH3 ジメチルエーテル C3H7Br CH3-CH2-CH2-Br CH3-CH-CH3 1 プロモプロパン Br 2-プロモプロバン 異性体 示性式は同じであるが,原子や原子団の立体配置が異なる異性体。 シス トランス異性体(幾何異性体) 炭素原子間の結合が自由回転できないた じ沸点や融点が異なる。 二重結合をもつ化合物や環式化合物にみられる。 <[ CH3 CH3 CH3. H C=C 融点 - 139℃ C=C H H 沸点 4°C H CH3 融点-106℃ 沸点 1°C シスト2-ブテン(シス形) * 鏡像異性体(光学異性体) 不斉炭素原子を つため, 互いに鏡像の関係にある。 沸点や融 トランスト2-ブテン(トランス形) COOH HOOC は同じであるが, 偏光に対する性質が異なる。 H3C SOH HO 斉炭素原子・・・ 同一炭素原子に4個の異なる原子や原 一団が結合した炭素原子 (図中の*が不斉炭素原子) H H D-乳酸 (鏡) L-乳酸 137 37

未解決 回答数: 0
数学 高校生

複素数平面 ?のとこがよくわかりません。

2-16 (364) 第5草 例題 C2.8 複素数の絶対値(2) 複素数zが=-i を満たすとき,次の問いに答えよ . (1)|zの値を求めよ. (2)|z+2i|+|2z-i の値を求めよ. 考え方 (1) 2|=|-i|より, |z5|=1 |2|-1=(|z|-1)(|z|+|z|+|z|+|z|+1)と変形する. (2)|z+2i|2=(z+2i)(z+2i)=(z+2i)(z-2i) |2z-i=(2z-i) (2z-i)=(2z-i (2z+i) **** これと, (1) を利用する. ++ 解答 (1) 2=-iより,||=|-i| ||| |2|=1 i=||=|8|=|| |-i=1であるから,| ||=1+1=1080p+r/ |z|+|z|+|z|+|z|+1>0 |z|-1=(|z|-1)(|z|^+|z|+|z|+|z|+1)=0 したがって, ここで, z|≧0 より, よって, ||=1 (2) z+2i|2=(z+2i) (z+2i) =(z+2i) (z-2i)=zz-2iz+2iz +4 6|2z-i-(2z-i)(2z-i) iの両辺の 対値をとる。 |z|-1=0 または ||^+|z|+|z|+||||| |z|2=zz =(2z-i) (2z+i) =4zz+2iz-2iz+1 よって, |z+2i|+|2z-i=5(zz+1) ここで2z=|2|2=1 より +in+e= (1)より,|z|=1 |z+2i|+|2z-i=5(1+1)=10 注 複素数平面上の図形 (p. C2-52~) では、 右の図の点P(z)は|z|=1 より単位円周上の点|z+2i|=|z(-2i)はP(z) A(-2i) 1C(i) との距離, 2zil=2z- i 2 の 12 - 1/2はP(2)とB(1/2)との 12 距離である。 PO=DO=1 より PA2=2PD'+1 よって, | z+2i2+|2z-i|=PA'+4PB2 となる. +0 +1 では,幾何を用い PA'+4PB' = 10 となることを証明する. 単位円と虚軸との交点をC(i), D(-i) とすると,Pが虚軸上の 点でないとき,△POAにおいて中線定理 (パップスの定理)から、 PA'+PO'=2(PD'+DO") D(-i) ←-1 A(-21) PO=1, BO=1/2より 2PB=PC2+ 同様に, △PCO において PC2+PO'=2(PB'+BO^) が得られ, + ・① 2 ·②

解決済み 回答数: 1