学年

教科

質問の種類

物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

問2を教えていただきたいです🙇 小物体が左に進んでいて台が右に進んでいるという考えは間違っていますか??

第2問 次の文章 (A・B) を読み、後の問い (問1~4) に答えよ。 (配点 25) A 水平な床面上をなめらかにすべることができる質量Mの台がある。 図1のよ うに、この台上のAB間は水平になっており、 BC 間は円弧で,その円弧の中心 Oは点Bの真上にあり,∠BOC=90°である。 台上の AB間, BC 間はともにな めらかである。静止している台上の端点Aに質量mの小物体を置き, 小物体に 点Bに向かって初速度vを与えたところ, 小物体は点℃まで上昇し,点Cか ら面に沿って下降した。 ただし, 小物体と台の運動は同一鉛直面内で行われる ものとし、 水平方向の速度は図1の右向きを正とする。 うんほよりmmo-mricm+Mo 小物体 m Vo T ON e 文 問1 正しいものを、次の①~④のうちから一つ選べ。 mino= (mtM C自体はとまってるから。 mvo=m+M)V 小物体が点Cに達したときの床面に対する小物体の速度を表す式として 台 T M B 床面 図 1 7 M m ① - Vo Vo m M M ④ Vo m+M m m+M Vo 問2/ 小物体が点Cに達した後,面に沿って下降して,台のAB間をすべって いるときの床面に対する小物体の速度を表す式として正しいものを、次の mn'+M. MMD ①~⑧のうちから一つ選べ。 8 mvo= 1 vo m- -M 2M 2m -Vo (3) Vo m m+M m+M ⑤ m-M 2M Vo Vo ⑦ m-M Vo m m M M うんどう量保存則より小物体 mammi 台 Ma. MV m+M 2m なめらかの台静止 ひ M (第2回-8) m+M-M in Va ・ぴ mtM M -200m+M M -1) w M-m-M mtm m mno=MV_mn Mm mtml M M m+M 0

未解決 回答数: 1