学年

教科

質問の種類

物理 高校生

さんかっこでtが2~3のときPに対するQの電位が負となる時はないんですか?

基礎問 89 自己誘導起電力 自己インダクタンス2[H) のソレノイドコイル、 電流を制御できる電源,抵抗値 10 [2] の抵抗,内 部抵抗が無視できる電流計およびスイッチを図1に Q 示すようにつないで,同路をつくった。 電源を制御して回路に流れる電流を、図2のよう に時間変化させた。ただし、電源から点Pに向かう 電流を正とする。 (1) 時刻(0<t<1[s])のとき,ソレノイドコ イルに生じる誘導起電力の大きさを求めよ。 (2) 時刻t=0.5 [s] のときの電源の出力電圧 (両端の電圧)を求めよ。 ソレノイド ソレノイドコイルの誘導起電力の時間変化を,横軸を時刻tとして図示 抵抗 電源) 図1 電流I(A) 21 0 一時刻t() 図2 せよ。ただし、点Pに対して点Qの電位が高いときを正とする (東京電機大·広島大) ●自己誘導起電力 コイルに流れる電流が変化すると 精 講 を貫く磁束が変化することにより,コイルに誘導起電力があ。 する。これを自己誘導起電力といい、その大きさは電流の時間変化の如へ 4t に比例し、その比例定数Lを自己インダクタンスという。 自己誘導起電力:V=-L- dt 起電力の向き 電流の変化を妨げる向き ●相互誘導起電力 電流が変化するコイル(1次コイル)の近くに別のコイル(o 次コイル)があるとき,2次コイルを貫く磁束の変化により,2次コイルに発生 する誘導起電力カを相互誘導起電力という。誘導起電力の大きさは,1次コイル の電流の時間変化の割合号に比例し、その比例定数Mを相互インダクタンス という。 相互誘導起電力: V=-M dt

回答募集中 回答数: 0
物理 高校生

一次不定方程式です! 解き方を教えてくれると嬉しいです!

次の等式を満たす整数x,yの組を1つ求めよ。 121 1次不定方程式の整数解(1) 本例題 425 OOOのの (1) 11x+19y=1 (2) 11x+19y=5 423 基本事項3 基本122 CHART OSOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 11と19 は互いに素である。。まず, 等式 11x+19y=1 のxの係数11とyの 係数19に互除法の計算を行う。その際, 11<19 であるから, 11 を割る数, 19 を割られる数として割り算の等式を作る。 a=11, b=19 とおいて, 別解のように求めてもよい。 (2) xの係数とyの係数が(1)の等式と等しいから, (1)を利用できる。 (1)の等式の両辺を5倍すると よって,(1)で求めた解をx=p, y=q とすると, x=5p, y=5q が (2) の解に 11(5x)+19(5y)=5 なる。 解答 移項すると 移項すると 移項すると 移項すると 1=3-2-1=3-(8-3-2)-1 =8-(-1)+3-3=8-(-1)+(11-8-1)-3 8=x =11-3+8-(-4)=11·3+(19-11·1).(-4) =11·7+19·(一4) (0) 19=11·1+8 11=8·1+3 8=19-11·1 3=11-8-1 2=8-3-2 別解(1) a=11, b=19 パーとする。 8=19-11-1=6-a 3=11-8-1 8=3-2+2 3=2·1+1 1=3-2-1 -aー(b-a)=2aーb |2-8-3-2 ー(b-a)-(2a-b)-2 よって =-5a+36 1=3-2-1 =(2a-b)-(-5a+36)-1 すなわち 1.7+19-(-4)=1 …0 ゆえに、求める整数x, yの組の1つは -7a-46 すなわち 11-7+19-(-4)=1) よって,求める整数x,yの 組の1つは x=7, y=-4 x=7, y=-4 (2) 0の両辺に5を掛けると 11-(7-5)+19-{(-4).5}=5 11-35+19-(-20)35 よって,求める整数x, yの組の1つは *=35, y=-20 すなわち る。このような解が最初に発見できるなら, それを答と してもよい。

回答募集中 回答数: 0
物理 高校生

読んでいただいてありがとうございます。 力学の質問があります。 こちらの問題の(2)なのですが、私はカエルの出したエネルギーというのが、どうにも気持ち悪くて、画像2枚目のように力積で考えてみたのですが、答えが合いません。。 どこで間違ってしまっているのでしょうか。 どなた... 続きを読む

カ学 58 天井からつるした滑車の両側に,それぞれ質 量mの皿A, Bをつるし、 皿Aに質量 Mの蛙、 皿Bに同じ質量Mのおもりをのせてつり合わせ る。I, 蛙, おもり以外の質量は無視できる。 この蛙は,床では高さんまで鉛直にとび上が れる運動エネルギーを出せるものとする。蛙が 同じエネルギーで皿Aから鉛直にとび上がると き、以下の間に答えよ。蛙の大きさは無視する。 0(1) 蛙が皿からとび上がるときの床に対する初 速度の大きさをVとし, 皿Aが床に接近する初速度の大きさかた 19 保存則 19 保存則 59 M V M+2m リ= 正の向きを 決めるのに 運動量保存則が成り立つためには, 物体 系に外力が働かないか, 働くとしても, そ GくUターン形 x4 x の座標軸を の力が0であればよい。 考えている。 M M (2) 蛙が出したエネルギーは Mgh であり, いまは,それが全体の運動エネル いだしたし4んかし 20 ギーに使われているから Mgh = ;MV2+小(m+M+m) 1 2 A B 2 (M+2m)gh M+m のを代入してVを求めると V= (3) 蛙がとんだ後の,皿とおもりの系につ いても1次元化を利用すると,加速度を a (M+m)g M, m, およびVで表せ。 X (2) 蛙の初速度の大きさ VをM, m, h, および重力加速度gで表せ。 (3) 蛙が皿Aから離れる距離の最大値はんの何倍か。ただし, I皿と床 の衝突はないとする。 mg aとして o。 (m+ M+m)a=-mg+(M+m)g M a= (埼玉大) M+2m IAの加速度は鉛直上向きにaであり, 蛙の加速度は下向きの重力加速 度gだから,皿に対する蛙の相対加速度は,上向きを正として,-gーa と なる。一方,相対初速度は Vー(一) =DV+v であり, 最も離れたときの Level(1)~(3) ★★ 相対速度は0だから Point & Hint (1)問題を1次元に焼き直して考えてみるとよい(問題24 (1参照)。すると, 物体系に対して重力という外力が左右に働くことになるが,そ の合力は……。 0°-(V+v)? = 2(-g-a)h' h'は距離の最大値である。①, ②, ③より, V,v,aを代入してんを求め 「保存則」というタイトルが大きなヒントになっている。 ると(①を用いてひをVに直してから②を代入するとよい), h'=h よって,1倍 (3)運動方程式を用いて, 皿Aに対する蛙の運動(相対運動)を考える。 10。 ECHURE (1) 次元化すると次のような力学系と同等である。外力としての重力は丘 右とも(M+m)g と等しく。 合力は0となっている。よ って, 運動量保存則が成り 立つ。右向きを正とすると Q 蛙が皿Aから最も離れる時と,蛙が床に対して最高点に達する時では、 どちらが先に起こるか。計算ではなく、定性的に考察してみよ。(★★) (M+m)g Mg や蛙 (1)で蛙がとび上がるときAを押す力を N, 糸の張力をT, その際の時 間をAtとする。蛙,A, Bとおもりの一体,についてそれぞれ力積と運 動量の関係式を記し, 次に運動量保存則を導いてみよ。 (★) mg 滑らかな水平面 0=-mu+MV- (M+m)u

未解決 回答数: 1
物理 高校生

94の(7)ですが、うなりだけでなく、経路差による波の干渉は考えなくて良いのですか?

スのとが預で 光線の 75 時間 3 Sから出た光の振動数を了, Hから遠ざかる M, に届く光の振動数をと 変位 おくと,「ロ=A」とドップラー効果の式より (図b) ア-- (6 M から反射される光の振動数を f"とおくと、 図cと(5)の結果より 2月.dcosr= COSアーT-sin'r=,/1-/sini)=n-sin'i これを(6の結果に代入すると 2md-sin (8) 入射角i=0° のときに干渉光が明るくなるので,(7)の結果より 2dm-sin'o"=2md (m+ "'Si<90° の範囲で, iを大きくすると光路差2d\n-sin'i は小さくな るので、i=i のときに干渉光が明るくなる条件は 24/m-sini-(m-- 速度 (7)「sin'0+cos'0=1」の関係と(⑥式よょり C-u .c-u_c-u, c+ 入 No ni /m+ よって 2d/n"-sin'i-(m+)a /"=D£ c+u Mが普調者 7 M から届く" の光と, Maから届く子の光が干渉して、黄の場合のうなり 質量 図b カ ……の n当する現象が起きたと考えられるので, うなりの 重力ー 垂直林 20 C+p Tア-| C+u a 2 c 弾 よって,求める周間は M,が“光高 82 05 (スリットによる光の回折) 動摩 ただし、の式より i=0, m=0 では光路差は今となり, iを大きく」ナ。 スリット周隔の最大公約数を考えてみる。 静止 1(4)2離れた波源からの光の弱めあいと、2離れた波添からの光の弱めあいを考える。 1図aより,2つのスリットからPに達する光の光路差は wsin0 である。 慣性 光ま ときに次の極大点をとりえないので,mèl となる。 (2 度 折理 の,6式より 2dVn?-sin'i 2nd m-7 て変 6で初めて弱めあう条件より wsin0,=ー のでは1次の強めあいであるから フモー m+ O1 g2) て よって sin0,= 20 2m-1 Vn"-sin'i (ただし、m=1, 2, 3, …) よって 2m+1 sin0 (整理すると(2m+1)'sin'i,=8mn,") よって sin= た wsinの=0+1×A 03) 薄 12) 2つのスリット間隔は, 30d, 45d, 60d,-75d, 90d, 120d, 135d, 180dの 組合せが考えられる。これらの最大公約数は15d となるから。 15d-sin6,=0+1×iの関係が成りたつとき,それぞれのスリットからの半 図。 中奈A 30dsin8,=2入 45dsin6=32 などとなり、すべてのスリッ トからの先が強めあう。 中※B(参考) N==1 (国9) 暗。 94(マイケルソン千渉計) い A4) (3 (4 え よって sin,= 「15d (3)絶対屈折率nの媒質中では, 波長は一倍になり,光にとっての距離である光学距離はn倍になる。 (6) M.はドップラー効果によって光源が発した振動数とは異なる振動数/'の光を受け取り, その/の光を反射する Mは動いているので, さらにドップラー効果が生じて, D にはS'とは異なる振動数" の光が届くことになる がすべて強めあう#A←。 n 一度 薄膜 次に して入! 射するう ラス板の 3 N=2 (図 10)の場合, 一離れた波源(例えば、 (5 2 の場合 = と考えて、弱 QとQ, Qa とQ)からの光が弱めあう条件は 入※B- 「D (1) ある点と1波長分離れた点の位相差は 2xであるので, 距離 /離れた地点で めあう条件は sing=-- 22 の位相差は 2元ー よって sin0,=ー sin0 DD'D'D一 44 4 (2) 2つの光線の経路差は 2L,-2L2 であるので, これが①式の!にあたる。 離れた波源(例えば, Qi と Qa, Qaと Q)か トD。 5) 中華C 弱めあう条件は x 2(Li-L)_4x(L-L) え の千渉を であると X5) 薄膜の よって 2x×- らの光が弱めあう条件は 図b dsin0=なので、 dが大 きいほうがsin@が小さく。 ゆえに0も小さな値となる。 ※A 別解 ガラス中におい (3) 厚さdのガラスを透過するときの光学距離は nd なので, ガラス内の往復 で生じる光路差は2nd-2dとなる。これが①式の!にあたる。 22※C= D て,波長は4になるので sin 0= よって sin0;=- よって 2x×2nd-2d_4xd(n-1) ※A← (図a),位相差の変化量は 4 N=1 のとき, 離れた波源の組合せで初めの弱めあいとなり, N=2 の D 中※D 2d 2ォー -21 ときも N=1 の場合のように, (4) M. と Ma が静止していたとき2つの光線はDで同位相であったことから, m(m=1, 2, 3, …) を用いて, ②式より 4z(L-L)。 Q.Q Q.9 離れた波源の組合せで初めの弱めあいと なった。一般に,スリットを2N(Nは大)等分した場合,N=1 の場合のよ n 4元d(n-1) =2xXm うに、号離れた波源原の組合せで初めの弱めあいとなるから#D* D 図のように、号離れた点. A6 一方、M,をだけHに近づけたとき, 2つの光線が初めて逆位相になった とすると, M,とHの間の距離は Lー41になっているので 4z(L-I-L)_4x(L:-La)_4x4 Qで光が弱めあうとすれば、 少し隣にずれたQ、で も同様に光が弱めあう。つま え よって sin,= D また、N=2 の場合のように, =2x×m-π 離れた波源の組合せで, 次の弱めあいとな| スリット内の号度れた点 るから sina- からの素元波どうしがすべて 弱めあう。 波長 入 以上2式より , 4元A ニ=x よって 4l=4 2入 よって sins== 図』 D 102 物理重要問題集 物理重要問題集 103 (5)新

回答募集中 回答数: 0
物理 高校生

5番なのですが、答えのところを四角で囲ってあるように、加速度の向きが上向きなのが分かりません。単振動の加速度は常に振動の中心向きなのでは?と思いました。x軸方向に合わせているということでしょうか? どなたか解答よろしくお願いします🙇‍♂️

必開や54.くたてばねによる単振動〉 図1(a)は,ばね定数 k, 自然の長さLの軽いばね (質量は無視できるものとする)を鉛直に立てたとこ ろを示す。このばねに質量 mの薄い台を取りつけ, 台の上に質量Mの小さな物体を静かに置くと, 図1 (b) L に示すようにばねは自然の長さからdだけ縮んでつり あった。この位置をつりあいの位置とする。つりあい の位置から台を軽く押し下げて手をはなすと物体は台 に乗ったままで振動するが, 強く押し下げて手をはな すと物体は台から離れて鉛直上方に飛び出す。 ばねは鉛直方向のみに運動するとし, 重力加速度の大きさをgとして次の問いに答えよ。 (1)ばねの縮んだ長さdを求めよ。 (2) 図1(c)に示すように, つりあいの位置から手で台をsだけ押し下げた。 このとき手が台 を押している力の大きさ F。 をん, s, gのうち必要なものを用いて表せ。 つりあいの位置から手で台を押し下げた長さ sが十分に小さいとき手をはなすと, 物体と 台は一体となって振動する。 なお, x軸はつりあいの位置を原点とし, 鉛直上方を正にとる。 (3) つりあいの位置からの変位がxのとき, 物体と台にはたらく力Fを求めよ。 (4) このときの振動の周期Tを求めよ。 次に,押し下げた長さ sが十分に大きいとき, 物体は台から離れて鉛直上方に飛び出す。 物体が台から離れる変位を xo とすると, つりあいの位置からの変位xがxoに達するまで, 物体と台はともに加速度αで鉛直上方に運動する。 このとき,物体は台から垂直抗力Nを受け, その反作用とし て台は物体から-N の力を受けているとする。 (5)物体の運動方程式と台の運動方程式をそれぞれ求めよ。 (6)垂直抗力Nを m, M, d, x, g のうち必要なものを用いて表 せ。また,導き方も記入せよ。 (7) 垂直抗力Nを変位×の関数として, 図2にグラフを示せ。 ただし, s>d とする。 (8)物体が台から離れるときの変位 xoを求めよ。 (9)物体が台から離れるときの物体の速さ vo を求めよ。 また, 導き方も記入せよ。 ただし, m=M, s=2d とし, 答えはM, k, gのうち必要なものを用いて表せ。 ばね 物体 図1 図2 N 3Mg |2Mg Mg 0 S [広島大) 000。

未解決 回答数: 1