学年

教科

質問の種類

数学 高校生

116の問題でカッコの中の数字はどこから出してきたんですか??(1)は-3.(2)は-1

あるから (ab+bc)-(b+ca) =(a-b)(b-c)>0 1章 方程式 式と証明 35 =2{(x-1)^-12}+3 =2(x-1)+1 > 0 51of =(x-2y)+(2y)+5y2 ゆえに 2x2 +3 > 4x ゆえに ab+bc > b2+ca 721 117 (1)x+5y24xy ( D 115 (1) (x+1)-2x x²-2x+1 =(x-1) ≧0 ゆえに x + 1 ≧ 2x =(x-2y)2+y^ 等号が成り立つのは, x-1 = 0, すなわち x=1のときである。 (2) (9x2+4y2)-12xy 9x-12xy+4y = (3x-2y) ≧0 ゆえに 9x2+4y2 ≧ 12xy (3)x+y)2+(x-y)2}-4xy S 等号が成り立つのは, 3x-2y = 0, す なわち 3x=2y のときである。 した。 = (x2 + 2xy + y2 + x2 -2xy + y2) -4xy 2x+2y2-4xy =2(x²-2xy+x2) =2(x-y) ≧0 && ゆえに (x+y)2 +(x-y)≧4xy 等号が成り立つのは, x-y= 0, すなわち x=yのときである。 (4) = (x2y2 + x° + y° +1)) これも正である。 -(x2+2xy+y) (x+1)(y2+1)(x+y) +6=xave-2xy+1 = = (xy-1)20 ゆえに (x+1) (y2+1) ≧ (x + y)2 等号が成り立つのは,xy -1 = 0, すなわち xy=1のときである。 116 (1)x+12-6x平(S) (2) =(x-3)2-32+12 \_s) (x-3)+3>08) ゆえに x2 + 12> 6x 2x2+3-4x = (2) (x-2y)20, y'≧0 であるから (x-2y)²+ y² ≥0 よって(x+5y2 ≧4xy 等号が成り立つのは,x-2y0 かつ y = 0, すなわち x = y=0のときで ある。 x2+y2+2x-4y +5 fp = (x2+2x+1)+(y2-4y +4) =(x+1)+(y-2)^o (x+1)^≧0, (y-2)^≧0 であるから (x+1)2 + (y-2)2≧0 よって+x + y'+2x-4y+5≧0 等号が成り立つのは, x+1=0 かつ (y-2=0, すなわち x = -1 かつ y=2のときである。 さ 118 まず, ab+cd> ac + bd を考える。 (ab+cd) - (ac+bd) = a(b-c)-d(b-c) 0 =(a-d)(b-c) B a>d, b>ch, a-d>0, b-c>0 あるから (ab+cd)(ac+bd) =(a-d)(b-c)>0 ゆえに ab+cdac+bd 次に, ac+bd > ad + bc を考える。 (ac+bd)-(ad+bc)(S) =a(c-d)-b(c-d) =(a-b)(c-d) e=e a > b, c >d より, a-b>0,c-d> あるから (ac + bd) - (ad+bc) =(a-b)(c-d) > 0 (8) 1

解決済み 回答数: 1
数学 高校生

赤文字のとこのように5のK乗-1を4mにするのはダメなのでしょうか?もしそうなら何故ですか?教えてください!

20 D 自然数に関する命の <おは自然数とする。2月は3の倍 納豆を用いて証明せよ。 ある整数を用いて3mと表される。 逆に、整数を用いて3mと表される数は30 その倍数である。 研究 自然数に関する 「証明 ガチ2ヵ=13+2・1=3 213の倍数である」 を (A) とする。 カートのとき よって、カートのとき、 (A) が成り立つ。 [2]nkのとき (A) が成り立つ。 すなわち +2kは3の であると仮定すると、 ある整数を用いて と表される。 k3+2k=3m n=k+1のときを考えると n2+2nk n=k+1 を代入。 ページの応用例 7 は自然数とする この命題を、自然数を 用して証明してみよう。 証明】 自然数を3 よって、 すべて 3k、 のいずれかの 10 [1] n=3k 20 練4 練習 43 15 Love (k+1)+2(k+1) (k+3k²+3k+1)+(k+2 (k+2k)+3(k2+k+1) =3m+3(k+k+1) =3(m+k2+k+1) +++は整数であるから、(+1)+2(+1) 倍数である。 よって, n=k+1 のときも (A)が成り立つ。 S [1], [2] から, すべての自然数nについて (A) が成り立つ。 (12.3111 [2]n=3 15 [3]n= よって 10 練習 (1) 1 は自然数とする。 5" -1 は 4 の倍数であることを,数学的帰納法を 用いて証明せよ。 (2 (1)ひkのき、(A)が成り立つ、すなわ を用いて 514mである 5kt1. -1 5.5-1 5f=4mtl

解決済み 回答数: 1
1/334