学年

教科

質問の種類

数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0
数学 高校生

この問題なんですが、一枚目の解答と、二枚目の解説動画の解答とで少し形がちがうのですが、どちらで答えたほうがいいのでしょうか?あと、一枚目の解答の最後の「よって、」からがなぜそうなるのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

31-40 (58) 第1章 数 列 Think 例題 B1.27 いろいろな数列の和 (2) 考え方 解答 S,=1-2'+3°-4'++ (−1)"'n を求めよ. **** S, は数列 an=(-1)"+2の初項から第n項までの和であるが, nが偶数か奇数から その和を分けて考える必要がある. nが偶数, つまり,n=2mmは自然数) のとき. wwwwwwwwww S2m=12-2°+3°-4++ (2m-1)-(2m) =(12-2)+(32-4)+. +{(2m-1)-(2m) } nが奇数、つまり、n=2m+1のとき 第2 第1項 S2m+1=12-2°+32-4’++ (2m-1)-(2m)+(2m+1) 第 (2m+1)項 =(1-2)+(32-4°)+....+{(2m-1)-(2m)*}+(2m+1) 第項 nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−2°)+(3-4)+..+{(2m-1)-(2m) } =Z{(2k-1)-(2k)*}=2(-4k+1) k=1 1 n=2, 4, 6. 数列 ((2m-1)-(2m) の初項から第m での和と考える。 =-4zm(m+1)+m=-m(2m+1) n=2m より,m= =nを①に代入して S=-- =-1/2m(n+1) -12(n+1) 和はで表す. nが奇数のとき, n=2m+1(mは自然数) とおくと, ちの方 m 〇りやよい m S=S2m+1= (12−22) + (3-4) +・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1) (m+1)(2m+1) =/ ③ n=2m+1 より, m = (n-1) を③に代入して S.=(2x+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ よって,②④より Focus S=(-1)+1 1/21n(n+1) が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 n=3, 5, 7, ...... n=1 とすると, 12/21.2=1 場合分けした② ① の形のままでもよい。 練習 一般項 an=(-1)n(n+1) で定められる数列の和 B1.27 S„=a1+a2+α+......+α を求めよ. ***

解決済み 回答数: 1