学年

教科

質問の種類

数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

波線ところから分からないので教えて欲しいです🙇‍♀️

領域問題② ② [2016 名城大] xy 平面上に、2本の半直線l: y=x(x2), my=-x (x≦0) がある。 l上を点P (+1, t+1) (t-1) が動き, m上を点Q (t-1, -1+1) (t≦1) が動く。 (1)直線 PQ の方程式をを用いて表せ。 1 -x2+1に接することを示せ。 (2) PQ はもの値によらず、常に放物線y=1/2x2 (3)tの値が1st1の範囲で変化するとき、 線分 PQ が動いてできる領域を求め, 図示せよ。 解説 asyson+1 [1] [2] から, a を xにおき換えて、線分 PQ いてできる領域を表す不等式は −2≦x<0 のとき -*Sys+1 0≦x≦2 のとき xsys +1 が動 これを図示すると、 右の図の斜線部分である。 ただし、境界線を含む。 (1) 直線 PQ の方程式は -t+1-(t+1) y-(t+1)= -{x-(t+1)} t-1-(t+1) ゆえに y=t{x-(t+1)}+t+1 よって y=tx-f2+1 (2) y=ax2+1とy=1/2x2+1を連立させて x²+1=tx-t²+1 ゆえに x2-4tx+4t2=0 よって (x-2)²=0 この方程式はtの値によらず、常にx=2tを重解にもつ。 1 したがって, 直線 PQはtの値によらず, 常に放物線y=-x'+1に接する。 4 (3) 線分 PQ の方程式は、 (1) から y=tx-t2+1 t-1≦x+1) ここでαを定数とし、直線x=αと線分 PQ の交点の座標をtの関数と考え、こ れをf(t) とすると f(t)=ta-t+1=-f+at+1=(t-1)+10 -3 a² +1 x=α と固定するときのの条件は 11... P かつ t-1≦a≦t+1 すなわち a-1≦tsa+1 ② ①,② から、点(a,t)の存在範囲は、 右の図の網の 部分のようになる。 ただし、境界線を含む。) t=a+1 したがって、 ①と②の共通範囲は -2 [1] −2≦a<0 のとき -1≤t≤a+1 ....... ③ O 2 a [2]02 のとき a-1≤t≤1 ・・・・・・・ ④ t= ここで,y=f(t) のグラフの軸は直線t=2 である 2 が、これは区間 ③区間 ④のそれぞれの中央の値 に一致する。 yのとりうる値の範囲を調べると [1] −2≦a<0 のとき 人 t=a-1 a yはt=-1, a+1で最小: 1=1/27 で最大となる。 f(-1)=f(a+1)=-a, a² -a≤y≤+1 [2] 0≦a≦2 のとき (1)=9 2 100 a² +1であるから,yのとりうる値の範囲は yはt=1, a-1で最小;t=1/2で最大となる。 f(1)=f(a-1)=α であるから, yのとりうる値の範囲は

回答募集中 回答数: 0