学年

教科

質問の種類

数学 高校生

127と128について質問です。 言ってる意味はわかるんですが、黄色い線が引いてあるところの3行がどうしてそうなるのか、また値域ってなに?となってしまいます。教えていただけると嬉しいです。

第1象限 3象 2象 4象限 B. 第3 2次関数 解答編 27 2 1 この関数のグラフは、 直線 y=x+2の に対応する部分である x=2のとき y=-2+2=0 x=2のとき y=1+2=3 101 ① ② を解いて (2)/(2)=4 から -5 よって、 グラフは [図)の実線部分である。 よって、 関数の値域は 0≤y≤3 126 (1) ∫(1)-2から a+b=-2 ...... D (3)4から 3a+b=4 ...... ② f(4)=0から ①.② を解いて a-3, b=-5 2a+b=4・・ ① 4a+b=0 ..... 2 a=-2,b=8 また、この関数は x=1で最大値3をとり この関数のグラフは、 4に対応する部分である。 -1のとき y=2·(−1)-3 のとき y=2-4-3=5 (3) x=-2で最小値0をとる。 (4) 127 0 より この関数のグラフは右下がりの 直線の一部であるから, f(x) =ax + b とすると, 「値城は (1) Sys/(-1) すなわち a+bsys-a+b) この値が-3syS1と一致するから」 a+b=-3, -a+b=1 これを解いて a=-2,b=-1 ラフは [図] の実線部分であ -5≤y≤5 0 最大値5をとり、 これはa<0を満たす。 第1節 2次関数とグラフ 43 125 次の関数のグラフをかき, 関数の値域を求めよ。 また、 関数の最大値 最小 図p.90 例題1 (2) y -2x+3 (-15x52) ☑ 値を求めよ。 (1) y=2x-3 (-1≤x≤1) (3) y=-3x+4 0x2) (4) y=x+2 (-25x51) ただ1つ *(5) y=x+4 (-2≤x≤2) *(6) y=-x+1 (0≤x≤4) B 問題 126 1次関数 f(x) =ax+bが次の条件を満たすとき,定数a, b の値を求めよ。 □ (1) ∫(1)-2,(3)=4 (2) f(2)=4,(4)=0 のよう 5. 1. SERV 1次関数の決定 例題 14 関数y=ax+b (1≦x≦3) の値域が, 0≦y1 となるような定数a, bの値を求めよ。 ただし, 0 とする。 第3章 2次関数 よって頂点の座標 (2,3) (8-1-5) -46x-1 + +(0-2) 104 +40 y=x =20 (a- 数学Ⅰ A・B・C問題 で最小値5をとる。 (5)関数のグラフは、直線y=1/2x+4の グラフは、直線 y=-2 対応する部分である。 128 問題の考え方■■■ -22に対応する部分である。 とき y=-2(-1)+3 き y=-2.2+3=- は [図] の実線部分で Sy≤5 x=2のときy=1/2 (-2)+4=3 SEL 基本的には問題127 と同様だが,に関する 条件が与えられていないため、 場合分けをす る必要がある。 p. 6 x=2のとき y=1/22+4=5 [1] a>0のとき 考え方 関数のグラフが直線の一部であるとき、 定義域の端の値に対応するyの値が、 値域の端の値になる。 それぞれどちらに対応するかは,xの係数の符号によっ て定まる。 解答 0 より この関数のグラフは右上がりの直線の一部であるから, よって、 グラフは [図] の実線部分である。 値は 3≤y≤5 この関数のグラフは,右上がりの直線の一部」 であるから, f(x) =ax+b とすると, 値域は f(x)=ax+b とすると, 値域は f(1) sysƒ(3) すなわち また、この関数は 大値5をとり, x=2で最大値5をとり (-1) Sy≤(2) a+b≦ys3a+b この値域が0y1 と一致するから a+b=0.3a+b=1 37号 すなわち -a+b≦y2a+b 直-1 をとる。 (2) x=-2で最小値3をとる これを解いて a=12. b=-12 これはα>0を満たす。 圏 この値域が, -7SyS8 と一致するから (6)この関数のグラフは、直線 y=- =1/2x+10 a+b=-7.2a+b=8 0≦x≦4に対応する部分である。 これを解いて a=5,b=-2 これは>0を満たす。 x=0のとき y=-0.0+1=1 x=4のとき y=-1/24+ ・4+1=-1 [2] a=0のとき この関数は y=bとなり, 値城が-7y8 とはならない。 よって、 グラフは [図 ] の実線部分である。 [3] <0のとき 関数の値域は -15y≤1 また、この関数は -直線 y=-last 分である。 =-3.0+4=4 =-3-2+4-1 x=0で最大値1をとり (5) x=4で最小値1をとる。 (6) yt ■実線部分である。 これを解いて =-5,b=3 り。 とる。 この関数のグラフは,右下がりの直線の一部 であるから, f(x) =ax+b とすると, 値域は f(2) ≤ y ≤ƒ(-1) すなわち 2a+bsys-a+b この値が-7Sys8 と一致するから 2a+b=-7, -a+b=8 これはa<0を満たす。 0 [1]~[3]から a=5, b=-2 または a=-5,b=3 【?】 α>0 という条件がないときはどのようになるだろうか。 127 関数 y=ax+b (1x1)の値域が,-3≦x≦1 となるような定数a, b の値を求めよ。 ただし, <0 とする。 をxcm 128 関数y=ax+b (12) の値域が, -7≦y≦8 となるような定数a, b の値を求めよ。 1 -3)

未解決 回答数: 1
数学 高校生

この問題の場合分けで、右の写真(手書きのやつ)の場合がないのはなぜなのでしょうか。また、なぜ軸が0から4に入っているのですか?教えて欲しいです

例題 73 解の存在範囲(5) **** 2次方程式 x-2ax+4a-9=0 の異なる2つの実数解のうち, ただ1 つが0<x<4の範囲にあるような定数αの値の範囲を求めよ. 考え方 0<x<4の範囲にただ1つの解がある場合とは、次の①~④の場合である。 ①②はf(0), f (4) 異符号の場合であるから, f(0).f(4)<0 ① (2) ③④はそれぞれ f(0)=0,f(4)=0 のときであるが,このとき ⑤ ⑥の場合も考 えられる.しかし,⑤,⑥は0<x<4の範囲に解をもたないので、注意が必要である. 第2章 ⑥ 解答 x 48 x x 48 04 0 4 0 4 0 4 y=f(x)=x2-2ax+4a-9 とおく. (i) f(0).f(4)< 0 のとき 7 9 したがって, a4 (4a-9)(-4a+7) <0 (4a-9) (4a-7)>0 <a (ii) f(0)=0 のとき, 4α-9=0 より このとき,f(x)=0 の解は, x2.2x+4.0-9=0より、 9 a=- x=0.02 9 0, 2 f(x)=0 は 0<x<4 に解をもたないから, a=- は不適. (ii) f(4)=0 のとき, -4a+7=0 より a= 74 9-4 04 x 04 x -4a+7=-(4a-7) 不等号の向きが変わ る. (ii) f(0)=0 のときは, ③ではなく⑤の場 合になるので不適 である. (Ⅲ) f(4)=0 のときは, ④ ではなく ⑥の場 このとき,f(x) = 0 の解は, x-2.7x+4・7-9=0 より x=- 4 合になっている. 7 f(x)=0 は 0<x<4 に解をもたないから,a=7 は不適. よって、(1)~()より、求める範囲はa<7 / <a よって、(i)~ (ii)より, 求める範囲は, Focus 解αがp <α <g のときは, f(p), f(g) の符号を調べる

回答募集中 回答数: 0