学年

教科

質問の種類

数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1
数学 高校生

同じ写真で質問失礼します。B=-3までは理解したのですがその後の計算の道筋が分からないので教えて欲しいです

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1
数学 高校生

この問題自体は理解出来ているのですが書き込みを加えたところについて質問です。 rのn乗=Pのn乗のとき奇数の場合と偶数の場合でr=Pかr=±Pか決まる、という方程式(?)が前ページに乗っていたのですが、これを使えるのが実数の範囲でみたいなことを解説動画で言っていて(理解出来... 続きを読む

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1