学年

教科

質問の種類

数学 高校生

ここはなぜn-1じゃなくてnなんでしょうか? 隣接三項間のp n+2〜p nじゃなくて p n+1〜p n-1 が関係してそうなのですが よく分かりません 誰か教えてください

492 重要 例題 52 確率と漸化式 (2) … 隣接3項間 座標平面上で,点P を次の規則に従って移動させる。 000 1個のさいころを投げ, 出た目をα とするとき, a≦2ならばx軸の正の方向 へαだけ移動させ, a≧3 ならばy軸の正の方向へ1だけ移動させる。 原点を出発点としてさいころを繰り返し投げ, 点P を順次移動させるとき、自然 数nに対し、点Pが点(n, 0) に至る確率をpm で表し, bo=1とする。 (1) + を py D-1で表せ 。 [類 福井医大 ] 基本 41.51 RECOR 出したA 40 それ を求めよ。 (2)が未玉を持つ 回作後までの でないかが問題と 回の操作後に、赤 操作による状態の変化 操作を回り返し 自然数nに対して、 (2) 求めよ。 指針 (1) P+1点Pが点(n+1,0)に至る確率。 点Pが点 (n+1, 0) に到達する直前の 状態を、次の排反事象 [1], [2] に分けて 考える。 [1] 1 6 pn Pa n-1 n n+1 [1] 点 (n, 0)にいて1の目が出る。 pn-1 [2] [2] (-10)にいて2の目が出る。 (2)(1) で導いた漸化式から" を求める。 (1) 点Pが点(n + 1, 0) に到達するには 解答 [1] 点 (n, 0) いて1の目が出る。 [2]点(-10)にいて2の目が出る。 Pa+1 X y軸方向には移動しない。 の2通りの場合があり, [1], [2] の事象は互いに排反で 点 (n, 0, (-10)に ある。 よって Pn+1= + 6 P+1+ Pn= Pn (2)①から persit/po=1/2(pet1/31) Dn+1 Pn=- 2 よって 1 PR+1+ Pn 3 1 1 Do CHART 確率の漸 いる確率はそれぞれ pn, pn-1 | 赤玉を持っている。 =1/2x+1/から 4x²== 6 6x2-x-1=0 持っていないことを A.B.Cの順に よってことにする。2回の (B)=(-1/11/12) Pn+1- =(-)-(-1 3 (12/12)とする。 p=1,p=1/2から Dn+1+ 30m=1 (1/2)+ Pn+1- n+1 = (2-3)÷ ・から 1\n+1 bn= 5 $6 A, B, COT 右のようになるから 26=1 2 22 4 A,B,C ているとき、 ④ 52 2 進むものとする。 このとき, ちょうど点nに到達する確率をn で表す。 ただし, 練習 硬貨を投げて数直線上を原点から正の向きに進む。 表が出れば1進み, 裏が出れば nは自然数とする。 (1) 2以上のnについて、Pu+1とPn, Pn-」 との関係式を求めよ。 (2) 求めよ。 出方によって、赤 は右のようになる a.t

回答募集中 回答数: 0
数学 高校生

至急です 数ⅠAの問題です エからが分かりません 誰か教えてください

| 104 | 数学ⅠA実戦問題 実戦問題 5 ★★☆ 制限時間15分 (1)辺の長さが等しい正方形と正三角形を、1つの辺で貼り合わせてできた多角形の辺り はア ] である。 また、辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ してできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を, 1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子:他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎:右の図のように,正八面体 ABCDEF と正四 面体 ABCG を貼り合わせたとき,△ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 △ABC の定める平面と △ABG の定める平 方針に 面のなす角をα △ABCの定める平面と 太郎さんが △ABE の定める平面のなす角をβとしたと E B F G I が成り立てば △ABG と △ABEは1つの平面上にあるといえるね。 また、き オ [キク 太郎 : cosa= cos β= I であるから, が成り立つね。 数学Ⅰ・A 同様に,4点 A,D, C, G 4点B, F, C, G も1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき,面の数は だね。

回答募集中 回答数: 0
数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
1/436