学年

教科

質問の種類

数学 中学生

解説の丸で囲まれているところはなぜこうなりますか?

-x(cm) だから, PB を1辺とする正方形の面積は, (6-x)=x-12x+36(cm²) ① ② より AP を1辺とする正方形の面積と PB を 1辺とする正方形の面積の和は、 x+x12x+36 =2x-12x+36 PC=AC-AP=3x (cm) だから. PCを1辺とする正方形の面積は、 (3-x)=x²-6æ+9cm²) CB を1辺とする正方形の面積は、 3=9(cm³) (a. c) (5, 1), (6, 2), (7, 3), (8. 4). (9. 5) の5通り。 なぜ? =5c=1のとき、 b=2,3,4の3通り 同様にして, (a,c)=(62)(73) (84),(9.5) 2 の場合についてももの値は3通りずつある。 3 {P.27} ......④ ....5 ④ ⑤ より PCを1辺とする正方形の面積と CB を 1辺とする正方形の面積の和の2倍は、 (x²-6x+9+9) ×2 =2x-12x+36 ......6 ③ ⑥ より APを1辺とする正方形の面積と PB を 1辺とする正方形の面積の和は, PCを1 辺とする正方形の面積とCBを1辺とする正方形 の面積の和の2倍に等しくなる。 6 17, 28, 39 よって、3個の数字の選び方は、 3×5=15 (通り) 5 1(1)-36a²+4ab (3) x²+9x+20 式の展開 (2) 3y-4 (5) 9x²-6xy+y (4) 4cc²+xy+g (6) a-9 (3)~(6)は, 乗法公式を利用して展開する。 (1) (9a-b)x(-4a) =9ax(-4a)-bx(-4a)=-36a²+4ab (2) (-6xy+8xy)+(-2xy) =- _68 -2xy -2xy 3 1 1 =+- 4 1 1 xxxxxxx=3g-4 XXX XXX =x+9x+20 (3)(x+5)(x+4)=x²+(5+4)x+5×4 解説の十の位の数を x, 一の位の数を ただし, xは1から9までの整数 までの整数とする。 とする。 (4) (2x+y^2=(2x)'+2xy×2x+y は0から9 =4x²+4xy+gf (5) (3x-g)=(3)²-2xy×3x+y =9x²-6xy+y (6) (a+3) (a-3)=α-3=d-9 (2) x²-x+1 2 (1) x²-12y (3) -8x+9 (4) 6a+25 P24 25 b= m=10x+y, n=x+y と表せるから, 11n-2m=11(x+y)-2(10x+y) =11x+11y-20x-2y=-9x+9y=9(-x+y) よって, 11n-2mは9の倍数である。 また, 50 11n-2m60 だから, 11n-2m=54 よって, 9-x+y)=54,-x+y=6 この式を満たすxyの値の組は, (x, y)=(1, 7), (2, 8), (3, 9) したがって, m=17, 28, 39 7 I 99(a-c) II 15 解説 A=100α+10b+c, B=100c+10b+αと表せるか ら. A-B=(100a+10b+c)-(100c+10b+a) =100a+10b+c-100c-10b-a=99a-99c =99(a-c) A-B=396 より, 99 (a-c) =396, a-c=4 acは1から9までの整数だから, a-c=4を満 たすα.cの値の組は, (5) -x+1 (7) 2a+10a+15 (9) 10x +32 (6) 11x-44 (8)5x+23 (10) 4 解説 まず, 乗法公式を利用して展開し、同類項をまと める。 (1)(x-3)(x+4y)-xy=x²+acy-12g-xy =x-12g/ (2)(x-2)^+3(x-1)=x-4x+4+3x-3 =x-x+1 (3) (2x-3)2-4x(x-1) =4x-12x+9-4x+4x=-8x+9 (4) (a+3)-(a+4)(a-4) =a+6a+9-(a²-16) =α²+6a+9-α+16=6a+25 12x 団イ 34 な 9 7 次の文章中のエ ]にあてはまる式を書きなさい。また,Ⅱ にあてはまる数を書 HIGH LEVEL きなさい。 1から9までの9個の数字から異なる3個の数字を選び, 3けたの整数をつくる とき,つくることができる整数のうち、1番大きい数を A, 1番小さい数をBと する。 例えば、 247 を選んだときは, A=742,B=247 となる。 A-B=396 となる3個の数字の選び方が全部で何通りあるかを次のように考 えた。選んだ3個の数字を, a, b, c (a > b >c)とするとき, A-B を abc を使って表すと、 A-B-396 となる。この式を利用することにより, なる3個の数字の選び方は、全部で Ⅱ 通りであることがわかる。

解決済み 回答数: 1
数学 中学生

2⑵解き方をわかりやすく3⑵単純に÷100でだめな理由4⑶解き方をわかりやすく この3問お願いしたいです🙇🏻‍♀️🙇🏻‍♀️🙇🏻‍♀️

なる [ (2) 小数第1位を四捨五入した近 似値が表示されるはかりがある。 このはかりを用いて, いちご 29. g は、 to for 1個の重さを測定したところ、上の図のように29g と表示された。 このときの真の値をαとしたと きαの範囲を不等号を用いて表せ。 (R6栃木) (1) する。 ✓ 1,732 とするとき,√0.03 の値 (宮崎) 10.01732 4 論理的に考える a を整数にする値 次の問いに答えなさい。 ] <12点×3> /126m の値が自然数となるような自然数nの うちもっとも小さいものを求めよ。 211202×32×7 セント (R6和歌山) 22 3年2 128.5≦a≦29.4] 2 根号をふくむ式の計算 次の計算をしなさい。 3263. 221 3 7 よく出る <8点×4> (1) 2√3+√2x- 得点UP (R6大分) 114 J √6 /40m 6112 3 の値が整数となるような自然数nのうち もっとも小さい数を求めよ。 2.3+2.3 [ 413 4√3 √400 ルートの中だから ] 3×2×5三重) 32かけなきゃいけない? 法(2) √6 (8+√42)+√63 2140 2252 (R6静岡) 2126 8V6+1252+163 3263 2)20 2200 23x5 42 =22×25 5 130 ] [ (3) (√7+√3) (√7-2√3) (3)(√7+√3)(√7-2√3) 7-21+12-0 5- 3221 223×10×2 (R6 千葉) } (3) αを十の位の数が0でない3けたの自然数とし, bをαの百の位の数と十の位の数とを入れかえて できる3けたの自然数とする。ただし,bの一の 位の数は αの一の位の数と同じとする。 次の2つ の条件を同時にみたすαの値をすべて求めよ。 ] 9 ( R6 愛媛 ) (4) (√3+1)2- (√3+1)2-3 3+2√3+1-313 a-b の値は自然数である。 √2 ・αの百の位の数と十の位の数と一の位の数との 和は20である。 (R6 大阪)

解決済み 回答数: 1
1/348