学年

教科

質問の種類

数学 中学生

答えは選択肢5なのですが、IVがなぜ読み取れるのかわからないです。第三四分位数で1日は確実に言えると思うのですが、他に30部屋の時があるのか読み取り方がわからないです。教えてください!

(イ) ある観光地の近くに1軒の旅館があり、この旅館の部屋数は40である。 下の図2は、この旅館に おいて,翌月の1日から30日までの30日間のそれぞれの日に,何部屋の予約が入っているか,その 予約数をまとめたものを,それぞれヒストグラムと箱ひげ図で表したものである。 ただし, ヒストグ ラムは0部屋以上5部屋未満,5部屋以上10 部屋未満などのように, 階級の幅を 5部屋にとって分 けている。 このヒストグラムと箱ひげ図から読み取れることがらを,あとのI~Vの中からすべて選んだとき の組み合わせとして最も適するものを1~6の中から1つ選び、その番号を答えなさい。 図2 ヒストグラム (日) 876543210 05 10 15 20 25 30 35 40 (部屋) 箱ひげ図 (1) 10 10 20 30 40 (部屋) A イ 予約数が35 部屋以上の日数よりも予約数が10部屋未満の日数の方が多い。 予約数の四分位範囲は16部屋である。 Ⅲ.予約数の中央値は23部屋である。 IV. 予約数が30 部屋の日数は1日である。 V. 予約数が4部屋の日は1日もない。 of 1 I, II II, IV 18 HTI, II, V この固定 3. I, III, IV 831 5. III, IV, V 6. III, V C

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
数学 中学生

(3)②と③の問題の解き方教えてください! ちなみに答えは②√5③25/12です。 図形に色々書いてあって見ずらいかもしれませんがすみません💦

【問4】 各問いに答えなさい。 図1は、円の円周上に3点A, B, C があり, 線分AB が円Oの直径であり, AとC, BとCをそれぞれ結んだも のである。 ∠Cの二等分線と線分AB, 円0との交点をそ れぞれD, Eとする。 AC=3cm, BC=6cm とする。 (1) 図1において, ∠ABC=α°とするとき, 大きさを表す式を,次のア~エから1つ選び, きなさい。 7 (a +30) ウ (75-α) T (a +45)° I (90-a) ① 四角形 AFBCの面積を求めなさい。 (2) 図2は、図1において, 線分CE上にCB // AF となる 点Fをとり,FとA, F とBを結び, F からABに垂線 FGをひいたものである。 ② FGの長さを求めなさい。 ADCの 記号を書 SATB = 2 290 SHEN old ofor A 図2 かげ A D it old G=EXEXY 3√5 x 10 x 1/² = 9 21α= 4² 22. ỏ DOG SVE 3154²9. E 6am 9+3 9+36-² x2=45 2=3√5 [GVS B. 755 245 215 5 (3) 図3は、図1において, 線分 AE 上に CA//DF となる 点Fをとり、点と点を結んだものである。 ① △ACD △DAF は, 次のように証明することがで に証明の続きを書き, 証明を完成させ きる。 なさい。 [証明] △ACDと△DAF で, CA//DF で, 平行線の錯角は等しいから, <CAD=∠ADF ...... ① ② 線分ADの長さを求めなさい。 ③ △DFEの面積を求めなさい。 図3 191 F ADO 9+36=x2 X²=/ 45 B

回答募集中 回答数: 0
1/26