学年

教科

質問の種類

数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 中学生

(2)の②の求め方が分かりません! 答えはあってたんですけど、求め方が全然違うくて、 ※写真、ごちゃごちゃしててごめんなさい、無視してください🙇‍♀️

○ の 6 にニと ko一 !U-TU 人) ーL v 0 30 60 90 120 150 180 210 240 (分) 空間図形と点の移動 図1の立体は,点Oを頂点とする四角錐である。この四角錐にお いて,底面の四角形ABCD は1辺の長さが6cmの正方形で, 4つの側 面はすべて正三角形である。この立体において, 点Eは辺OA上にあ り,OE=4cmである。このとき,次の問いに答えなさい。 (1) 点Pは,点Aを出発し,毎秒1cmの速さで底面の正方形ABCD の辺上を,点B, Cを通って点Dまで移動する。 ① 点Pが点Aを出発してから2秒後のとき, △EAPの面積は, △OABの面積の何倍であるか 答えなさい。AE=AP=2cmだから, △EAPSAOAB よって,相似比は AE: A0=2:6=1:3 面積の比は1°:3°=1:9 ② 点Pが点Aを出発してからx秒後の△PDAの面積をycm'とする。このとき, αとyの関係 を表すグラフを, 解答らんの図にかきなさい。ただし, xの変域を0szs18とする。 点Pが辺AB上を動くとき, 辺BC上を動くとき, 辺CD上を動くときに分けて考える。 (2) この立体において, BF=4cmとなる辺BC上の点をFとする。図2 15 (6点×4=24点) 図1 倍 2 y(cm°) (静岡) 21 18 15 12 9 6 3 A B Nz(秒) 369 12 15 18 0 図2 E のように,点Eから辺OB上を通って点Fまで, 立体の側面に糸をか ける。解答らんの図は, 図2の立体の展開図の一部を示したものであ る。このとき,次の問いに答えなさい。 ① かける糸の長さがもっとも短くなるときの糸のようすを, 解答らん A E. /F A B B- の図に線でかきなさい。 2,13 cm 2 そのときの糸の長さを求めなさい。 チャレンジ 線分EFと辺OBとの交点をGとし, 点Fから線分BGに垂線FHをひく。 △0GE=ABGFより, 0G=BG=3cm 1 2 AFHBで,ZFBH=60°より, BH= FB=2(cm) よって, GH=3-231(cm) また, FH=/3 BH= 2/3 (cm) AFHGで、ZFHG =90°より, GF°=GH°+FH°=1°+ (2/3)313 GF>0より, GF=/13 (cm) EF=2GF=2/13 (cm,

回答募集中 回答数: 0
1/4