学年

教科

質問の種類

数学 中学生

√42が無理数であることの証明についてです。 m=√42nなのでmが2よりも大きくなるのはわかるのですが、nがなぜ2よりも大きいといえるのかが分かりません。(青線部)教えてください。お願いします。

答 √42 が有理数であると仮定すると √42mm,nは自然数)と表される。 n =√42nとし、両辺を2乗すると m²=42n2... ① 結論を否定。 無理数でない ⇔有理数である m≧2.n≧2であるから,m, n を素因数分解したものをそ6<42くから。 れぞれ m=pip2.pk (P1, P2,, De は素数) n=gg....... (g1, Q2,, q は素数) とし、①に代入すると 2. 2. Di2DzDk2=2・3・7g2q2qi2 ここで,②の左辺の素因数の個数は 2k個 右辺の素因数の個数は 21+3個 の断り書きを忘れず に。 42=2・3・7 ② 偶数個。 奇数個。 すなわち、 同じ数が2通りに素因数分解されることになり、参考 ②で、2の素因数の 素因数分解の一意性に反する。 よって, 42 は有理数でない, すなわち無理数である。 個数が, 左辺は偶数個, 右辺は奇数個であること から矛盾を導いてもよい。 数学Ⅰの 「命題と証明」の単元においても,上の例題と同じような問題を背理法で証明する ことを学ぶが (p.80), そこでは,pg を 「1以外に正の公約数をもたない (互いに素であ 約数と倍数

解決済み 回答数: 1
数学 中学生

(2)について質問です。なぜこの式になるか分かりません💦

解けたら エルに挑戦争 19 による説明 ること 難易度 レベル★★ ★ 考えてみよう! 220-21 3 下の図のように、大きさのちがう半円と。 同じ長さの直線を組み合わせて, 陸上競技用 のトラックを作った。 [半円部分 直線部分 幅1m 部分 カレンダー いろいろ am 0 第4レーンの 26m 第1レーンの 走者が走る距離 走者が走る距離 第1レーン 第4レーン 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また, 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず, 円周率を とすると次の問いに答えなさい。 回(1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を について解きなさい。 和歌山 右の さんは、 1+8+1 のように さんは ふめ数 進 ょう l=2a+wb 両辺を入れかえる よる説明 2a+wb=l 2a=l-rb wbを移填する a=b-rb 両辺を2でわる l-rb 2 a= 2 [栃木] (2) 図のトラックについて, すべてのレーンの A ゴールラインの位置を同じにして, 第1レー ンの走者が走る1周分と同じ距離を各レーン の走者が走るためには, 第2レーンから第 4レーンまでのスタートラインの位置を調整 する必要がある。 第4レーンは第1レーンよ りスタートラインの位置を何m前に調整す るとよいか。 求めなさい。 ただし、走者は、 各レーンの内側のラインの20cm外側を走る ものとする。 第1レーンは、amの直線部分の長さ2つ分と、 直径(6+0.4)mの半円の弧の長さ2つ分の合計だから、 X2+(+0.4)xx/12×2=2a+b+0.4(m) 第4レーンは, amの直線部分の長さ2つ分と、 直径(6+6.4)mの半円の弧の長さ2つ分の合計だから X2+(b+6.4m×1 x2 =2a+b+6.4x(m) ② ②①の分だけ 第4レーンのスタートラインを前にす ればよいから, (2a+xb+6.4x)-(2a+xb+0.4x) =6(m) 6 m

未解決 回答数: 1
1/290