学年

教科

質問の種類

数学 中学生

(3)の解き方教えてください!! 答えはA、B、D、E と C、D、E、F でした

5 図1のように, AB AC の鋭角三角形ABCがある。 図 1 次の(1)~(4) に答えよ。 B (1) 図1において, 点Aから辺BCへの 垂線を作図する。 図2は, 点Aを中心と して, △ABCと4点で交わるように 円をかき, その交点を,あ、い, うえと したものである。 C 図2 A 図2のあ〜えの点の中からどれか2点を P,Qとすることで,次の手順によって, 点Aから辺BCへの垂線を作図することが できる。 あ B い 手順 え C ① 点P,Qをそれぞれ中心として, 互いに交わるように等しい半径の円をかく。 2 ① でかいた2つの円の交点の1つをRとする。 ただし, 点Rは点Aとは 異なる点とする。 3 直線ARをひく。 このとき、点P,Qとする2点を、 図2のあ〜えから2つ選び, 記号をかけ。 また,手順によって, 点Aから辺BCへの垂線を作図することができるのは, 点Aと点P, 点Pと点R, 点Rと点Q, 点Qと点Aをそれぞれ結んでできる図形が, ある性質をもつ図形だからである。 その図形を次のア~エから1つ選び, 記号をかけ。 ア 直線ARを対称の軸とする線対称な図形 イ∠BACの二等分線を対称の軸とする線対称な図形 ウ点Aを対称の中心とする点対称な図形 エ点Rを対称の中心とする点対称な図形

回答募集中 回答数: 0
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

[ 問7] 右の図1は ある中学校第2学年の, A組, B組, C組それぞれ生徒37人の 図 1 A組 ハンドボール投げの記録を箱ひげ図に 表したものである。 B組 図1から読み取れることとして 正しいものを 次のア~エのうちから 選び, 記号で答えよ。 C組 0 5 10 15 20 25 30 35 40 (m) ア A組, B組 C組のいずれの組にも, 記録が30mを上回った生徒がいる。 イ A組, B組, C組の中で, 最も遠くまで投げた生徒がいる組はC組である。 ウ A組, B組, C組のいずれの組にも, 記録が15mの生徒はいない。 エ A組, B組, C組の中で, 四分位範囲が最も小さいのはB組である。 〔8〕 次の 「の中の 「あ」 「い」 に当てはまる数字を 図2 それぞれ答えよ。 右の図2で点Oは, 線分ABを直径とする円の 中心であり, 3点C, D. Eは円0の周上にある点 である。 A B 5点A, B, C, D, E は, 右の図2のように, A, D, B, E. Cの順に並んでおり,互いに 一致しない。 点Bと点E 点Cと点D, 点Dと点Eをそれぞれ 結ぶ。 2 線分CDが円Oの直径, AC = ABのとき, xで示した∠BEDの大きさは, 5 あい 度である。 〔問9] 右の図3 で, 四角形ABCDは,∠BADが鈍角の 四角形である。 解答欄に示した図をもとにして, 四角形ABCDの 辺上にあり,辺ABと辺ADまでの距離が等しい 点Pを, 定規とコンパスを用いて作図によって求め、 点Pの位置を示す文字Pも書け。 図3 A ただし, 作図に用いた線は消さないでおくこと。 -1- B

回答募集中 回答数: 0
数学 中学生

学校の宿題で、調べた市の2月の最高気温をデータ化して自分の意見をまとめるという宿題が出たのですが、自分の意見に自信が無いです。写真の1枚目は私が書いたプリントで、2枚目は書き方のヒントです。 私が考えたのは ⑥12% 「0°以上12℃未満」に含まれる日数は100年前と比... 続きを読む

45 40 35 30 25 20 15 10 5 1学年 7章 まとめ 0 ① 階級の幅を3℃にして, 1920年~1924年と2020年~2024年の度数分布表をつくる。 度数(日) 階級 (℃) 階級値 (℃) 12 15 O ~3 3 ② 上の度数分布表をもとにして, それぞれのヒストグラムをかき度数折れ線をかく。 (日) 1920年~1924年 50 市の2月の最高気温について 0 6 ~9 18~21 21~24 24~27 計 3 ~15 ~18. 6 1年組番 名前 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 9 12 15 18 21 24 27 (°C) (日) 50 45 40 35 30 25 20 15 10 1920年~1924年 5 14 41 46 30 q 0 0 142 0 3 6 9 2020年~2024年 12 2020年~2024年 5 18 37 30 18 12 10 141 15 18 21 24 27 (°C) ③ 度数分布表をもとにして, 中央値をふくんでいる階級をそれぞれ求める。 1920年~1924年 9 °℃ 2020年~2024年 28 I 12℃以上 ④ 度数分布表をもとにして, それぞれの最頻値,平均値を求める。 ※小数第二位を四捨五入して、小数第一位で求める。 1920年~1924年 予想 2020年~2024年 1920年~1924年 12℃未満 未満 _% 15°C ⑤ 「0℃以上12℃未満」にふくまれる日数は, それぞれ全体の何%か? 最頻値 10.5°C 10.5°C 72% 42% ⑥ ①~⑤までで求めたことをもとにして, 2120年~2124年の5年間では「0℃以上12℃未満」に占める日数の割 合は全体の何%になると予想されるだろうか。 また、 なぜそう考えたのか ①~⑤の結果をもとに書いてみよう。 平均値 10.1°C 13.9°C 2020年~2024年 ⑥のようになっていくと考えた理由を、 現在の環境問題と照らし合わせて説明してみよう。

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0