学年

教科

質問の種類

国語 中学生

現代文の問題が分かりません!!! 教えてください!!!

グラフ1 高校生の平日1日あたりのインターネット 利用時間の平均値の推移 220 213.8 210 207.3 192.4 190-185.1 平成26 平成27 平成25 平成29 平成29年度青少年のインターネット利用環境実態調査 |調査結果一内閣府」 グラフ2 平成29年度の高校生の平日1日あたりの インターネット利用時間の分布 5時間以上 26. 24時間以上5時間未満 10.3 3時間以上4時間未満 | 17.4 | 2時間以上3時間未満 20.4 2時間未満 使っていない 10.2 わからない 2.0 23.7 0.0 5.0 10.0 15.0 20.0 25.0 30.0 「平成29年度青少年のインターネット利用環境調査 調査結果 内閣府 |グラフ3 私たちのクラスの生徒の平日1日あたりの 5時間以上 インターネット利用時間の分布 4時間以上5時間未満 25.0 3時間以上4時間未満 20.0 2時間以上3時間未満 115.0 2時間未満 12.5 使っていない 0.0 わからない 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 学習委員によるアンケート調査をもとに作成」 たなか 次の【文章】は、生活委員の田中さんが書い (1) □Aに入る言葉を簡潔に書け。 (1点)ワン 報告文の一部で、グラフ1~3は、そのた めに用いた資料です。 これらを踏まえて問い に答えなさい。 資 タ 2 【文章】 ■ X・Yに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 す = (20点) 2 Y=もし ア X=しかし イ X=ところで ウ X=もし Y=しかし Y=たとえば エX=たとえば Y=ところで 2 グラフは、平成26年度から20年度にかけての「高校 生の平日1日あたりのインターネット利用時間の平均値 の推移」を表しています。 利用時間が、年々 A ことが分かります。 現代は情報社会が進展していく過 程にあるので、これは当然だと言えるでしょう。 1日あたりの平均利用時間が30分を超える のは長すぎるのではないでしょうか。 グラフ2は、「平成29年度の高校生の平日1日あた りのインターネット利用時間の分布を示しています。 「5時間以上」が26・1%、「4時間以上5時間未満」 が10.3%となっています。 両者を合わせると38・4% になります。つまり、 Bが、1日に4時間以 上インターネットを利用しているのです。 04 グラフ3は、「私たちのクラスの生徒の平日1日あ たりのインターネット利用時間の分布」を示したもの です。これを見ると、 Cの人が、1日に4時間 以上インターネットを利用していることが分かります。 すいみん 私は、平日に4時間以上もインターネットを利用す るというのは長すぎると考えます。 以下に、その理由 を述べます。私たちの平日の生活を振り返ってみま しょう。人によって多少の違いはあるでしょうが、通 学に要する時間も含めると、登校から帰宅まで10時間 程度はかかります。 睡眠時間を7時間、食事や入浴、 その他の細々したことに使う時間を2時間とすると、 残りは5時間しかありません。4時間以上イン ターネットに使ってしまったら、学習のための時間を 十分にとることは、かなり難しくなるでしょう。 内閣府の調査によると、高校生のインターネットの 利用内容は、コミュニケーション、動画視聴、音楽視 聴が主だということです。 現在、1日の利用時間が4 時間を超えている人は、これらのうち、自分にどうし ても必要なものを残して、他はある程度制限したほう がいいのではないでしょうか。自分なりのルールを作 り、節度のある利用を心がけたいものです。 ■BCに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 (20点) C=過半数 ア B=2人に1人以上 イ B=2人に1人近く ウ B=3人に1人近く エ B=3人に1人以上 C=4人に1人程度 C=ほとんど C=半数以上 線部「学習のための時間を十分にとることは、 かなり難しくなるでしょう。」を、次の条件に従ってよ り強い主張をこめた表現に書き改めよ。 条件1 「いったい」という言葉を使い、 「......か。」 の形で書く。 条件2 二十字以上、三十字以内で書く。 (2点) ⑤ 【文章】により説得力を持たせるためには、どん なことを示す資料を付け加えたらよいか。 最も適当 なものを次の中から選び、記号で答えよ。 (20点) ア 保護者のインターネット利用内容 イ中学生のインターネット利用時間 ウ 高校生のインターネット利用内容 高校生と中学生のテレビの視聴時間

回答募集中 回答数: 0
数学 中学生

分からないのでわかる方いたら、解説お願いしますm(_ _)m

10 関数 y=ax2 ✓チェックコーナー 中学で学習したこと 1 関数 y=ax² yはxの2乗に比例し、x=3のとき y = 18 であるとき ポイント xの式で表すと y=l ] x=2のときy=[ 2 関数y=ax のグラフ (1) 関数 y=ax のグラフを[ ]という。 (2) グラフは [ ]を通り, [ ]軸について対称。 (3) α > 0 のときは, [ 開いた形。 ]に開いた形α 0 のときは [ (4) αの値の絶対値が小さいほど, グラフの開き方は [ 51 関数y=ax のグラフが点 (2,-4) を通るとき、 次の問に答えな さい。 (1) α の値を求めなさい。 y 0 x 2 ]に 0 [増] ]。 (2)この関数のグラフをかきなさい。 -6- (3)この関数のグラフは,点(-5,m) を通る。 m の値を求めなさい。 -8 052 右の図の(1)~(4) は下のテ〜 エ の関数のグラフを示したものである。 (1)~(4) はそれぞれどの関数のグラフか ⑦ y=x2 ①y=-2x2 ⑦y= H A 12 23 x2 -10 ·12 (1) (3) (4) (2) y = ax¹ a> o yはxの2乗に比例し 153 で表しなさい。 x=-3のとき y=3であるとき yをxの式 関数 y = 2x で, xの値が1から めなさい。 3)関数y= めなさい。 1から3まで増加するときの変化の割合を求 -xで,xの変域が2≦x≦5のときのyの変域を求 4)関数y=ax2 で, xの値が4から2まで増加するときの変化の割合 は3である。の値を求めなさい。 5) 関数 y=ax2 で, xの変域が-1≦x≦3のとき, yの変域が 0≦ys6 の値を求めなさい。 である。 α 154 右の図のように、関数y= 1 2 xのグラ 上に, x座標がそれぞれ3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, 座標は3である。 次の問に答えなさい。 (変化の割合) _yの増加量) ( xの増加量) 変化の割合は、 1次関数 y=ax+bで は一定だが、 数y=axで は一定ではない。 (3)y の変域を 求めるときは、 グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず 物 と直線の交点 A,Bの座標を 求める。 直線AB の式を求めなさい。 <座標に目もりが 2 △AOBの面積を求めなさい。 ないが、放物線 線分AC 上の点で, △AOBAPB となるような点Pをとる。 点Pの がどちら側に いているか 開 座標を求めなさい。 き方の大きさは どうかから考え ると,答えられ x る。 < (2) AAOB & y 軸で2つの三角 形に分けて考え るとよい。 (3)直線AB と 平行で点を通 る直線と線分 AC との交点を 考える。 高校で学習すること 高校では, 関数 y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行 移動させたグラフ(頂点が原点0にない放物線) を学習する。(数学1 ) y=ax W 0 原点 -(2.α) I チェック 1 2x2, 8 2 (1) 放物線 (2) 原点 (0),y (3) 上下 (4) 大きい

未解決 回答数: 1
数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
1/691