学年

教科

質問の種類

数学 中学生

(2)の②の求め方が分かりません! 答えはあってたんですけど、求め方が全然違うくて、 ※写真、ごちゃごちゃしててごめんなさい、無視してください🙇‍♀️

○ の 6 にニと ko一 !U-TU 人) ーL v 0 30 60 90 120 150 180 210 240 (分) 空間図形と点の移動 図1の立体は,点Oを頂点とする四角錐である。この四角錐にお いて,底面の四角形ABCD は1辺の長さが6cmの正方形で, 4つの側 面はすべて正三角形である。この立体において, 点Eは辺OA上にあ り,OE=4cmである。このとき,次の問いに答えなさい。 (1) 点Pは,点Aを出発し,毎秒1cmの速さで底面の正方形ABCD の辺上を,点B, Cを通って点Dまで移動する。 ① 点Pが点Aを出発してから2秒後のとき, △EAPの面積は, △OABの面積の何倍であるか 答えなさい。AE=AP=2cmだから, △EAPSAOAB よって,相似比は AE: A0=2:6=1:3 面積の比は1°:3°=1:9 ② 点Pが点Aを出発してからx秒後の△PDAの面積をycm'とする。このとき, αとyの関係 を表すグラフを, 解答らんの図にかきなさい。ただし, xの変域を0szs18とする。 点Pが辺AB上を動くとき, 辺BC上を動くとき, 辺CD上を動くときに分けて考える。 (2) この立体において, BF=4cmとなる辺BC上の点をFとする。図2 15 (6点×4=24点) 図1 倍 2 y(cm°) (静岡) 21 18 15 12 9 6 3 A B Nz(秒) 369 12 15 18 0 図2 E のように,点Eから辺OB上を通って点Fまで, 立体の側面に糸をか ける。解答らんの図は, 図2の立体の展開図の一部を示したものであ る。このとき,次の問いに答えなさい。 ① かける糸の長さがもっとも短くなるときの糸のようすを, 解答らん A E. /F A B B- の図に線でかきなさい。 2,13 cm 2 そのときの糸の長さを求めなさい。 チャレンジ 線分EFと辺OBとの交点をGとし, 点Fから線分BGに垂線FHをひく。 △0GE=ABGFより, 0G=BG=3cm 1 2 AFHBで,ZFBH=60°より, BH= FB=2(cm) よって, GH=3-231(cm) また, FH=/3 BH= 2/3 (cm) AFHGで、ZFHG =90°より, GF°=GH°+FH°=1°+ (2/3)313 GF>0より, GF=/13 (cm) EF=2GF=2/13 (cm,

回答募集中 回答数: 0
数学 中学生

(1)の②と③の解説中に出てくる、 4✖️5分の4 や 5分の4✖️2xの 5分の4とは、どこから出てきたものですか? 右下に書いてある比を使った求め方はできるのですが このやり方がよく分かりません。 教えてください🙇‍♀️🙇‍♀️

やってみよう! 応用問題 動く点と立体の体積 関数 y%3arと一次関数 (福井) 図のように、AB=5cm, AD=3 cm, AE=4cmの直方体がある。 点Pは, 頂点Aを出発して、対角線 AH.辺 HG. GF, FE, EA上をA→H →G→F→E→Aの順に毎秒2cmの速さで動き、頂点Aに達したところで停止する。 点Qは、頂点Aを出発して, 辺AB, BC上を, A→B→C→Bの順に毎秒1cm の速さで動き,点Pが停止すると同時に停止する。2点P, Qが同時に頂点Aを 出発し、出発してからェ秒後の三角錐 PDAQ の体積をy cm'とする。ただし, エ=0 のとき,y=0 とする。 このとき,次の問いに答えよ。 (1) 点Pが対角線 AH上にあるとき, H E \ c 6 D A 0 xの変域を求めよ。 三平方の定理より, AH=V4°+3° =\25 =5(cm) AD=3, DH=4で, ZADH=90°だから, 5 0SxS 2 の 点Pは毎秒2cmで進むから, AH 間は一秒で通過する。 2 x=2のときのyの値を求めよ。 AP=4 AQ=2 点Pの辺 ADからの高さは, 4×=D (cm) 5 2 16 2 y= 16 5 5 1 よって, y= 16 -×3×2×- 5 4 2 16 3 y= 5 5 3 yをェの式で表せ。ADAQを底面とすると,高さは一×2.r=x 8 2の変域 よって、リ=××3×x×ォ= 8 -エ 5 2 5 5 <xS5 (2) 点Pが辺HG上にあるとき, エの変域を求めよ。また,そのときのyをェの 式で表せ。AG間は 10 cmだから, 点Pは5秒後にGに達する。 このとき,点Qは辺 AB上にあり, ADAQ を底面とする三角錐 PDAQ リ= 2.c 1 -×3×ェX4=2c の高さは, DH=4 よって, y=×。 (3) 5SrS9のとき, zの値に関係なく,yの値は一定になることを言葉や数、 51 5, 秒後 5 式などを使って説明せよ。 (説明)(例) 三角錐 PDAQの底面を△DAQ とみると, 占Pは辺 GF,辺 FE上を動くので,三角錐誰の高さは 4(cm)で一定である。また,点Qは辺 BC上を動くので、 (1)0 AADH は辺の比が 3:4:5直角三角形。 2 PからADに垂線PI をひくと,PI: HD= ×3×5= (cm)で一定である。 した 15 AP:AH PI:434:5 2 15 X43D10om3\- 2 より、PI= 16 %D -(cm) ふくって 1はーx 5

回答募集中 回答数: 0