学年

教科

質問の種類

数学 中学生

4⑵の解説で、Qチームは(10-x-y)勝と書いてありますが、どうして-yなのでしょうか

日】 ページ 院高) PチームとQチームが10回試合を行い, 1試合ごとに次のようにポイントを与える。 次の 問いに答えなさい。(10点×2) ① 勝ったチームには、3ポイントを与える。 引き分けのときは,両チームに1ポイントを与える。 ② 負けたチームには,ポイントを与えない。 [福井-改) (1)Pチームが5回勝って3回引き分け 2回負けた場合. P チーム, Q チームのポイントの 合計をそれぞれ求めなさい。 第2章 第3年 4 火) ポイントの合計がポイントチームが1ポイントであった。このとき、 Pチームが試合に勝った回数と引き分けた回数をそれぞれ求めなさい。 のうど 5 濃度が異なる300gの食塩水 Aと200gの食塩水 B がある。この食塩水 A.B をすべて混ぜ たら、食塩水Aより濃度が2%低い食塩水ができた。 さらに水を500g入れて混ぜたら. 濃度は食塩水Bと同じになった。 食塩水 A, B の濃度はそれぞれ何%か, 求めなさい。(10点) 第5号 第6章 総仕上げテスト 個数を個、Bの個数を個とする。 午前中に売れた個数について, 0.3(z+g)=57 x+y=190 …① 売れ残った個数について, 0.1.x+0.04μ=16 5+2y=800 ...② ② ①×2 より 3=420 x=140 よって, 仕入れた A の個数は140個。 3 昨日の製品 A, B の売り上げ個数をそれぞれ個 個とする。 昨日の売り上げ個数について, x+y=600... ① 本日の売り上げの合計について 200x0.8x+500 x 1.1y=252000 16x+55y=25200 ...② ①x55-② より, 39=7800=200 よって、 本日の製品 A の売り上げ個数は, 0.8×200=160 (個) 4 (1) Pチームは5勝3引き分けだから,ポイントは, 3×5+1×3=18 (ポイント) Qチームは2勝3引き分けだから、 ポイントは、 3×2+1×3=9 (ポイント) (2)P チームが勝って回引き分けたとすると、 Pチームは勝ㇼ引き分けだから。 3.x+y=11 ...... ① Q チームは (10) 引き分けだから。 3(10-x-y)+y=173.c+2y=13....② ②① より 2 これを①に代入して, 3x+2=11 x=3 よって, Pチームが勝った回数は3回 引き分 けの回数は2回。 のうど

未解決 回答数: 1
数学 中学生

解説を見ても分かりません。どうか教えてください🙏

第2章 関数 9 [1] のように 2点 A (8, 0). B(0.8) があり、 分 OA. OB を半径とするお うぎ形OAB がある。 また、 点 P(1, 0) と, AB 上に座標が 1である点Qがある。 なお, ある点の座標と 座標がともに整数であるとき. その点を格子点という。 [2] のように. おうぎ形OAB と直線 12/2x+4がある。 このとき [2] の灰色をつけた部分の 内部および周上にある 格子点の個数を求めな さい。 [1] pa-37 このとき、次の(1)~(4)の各問いに答えなさい。 線分PQの長さを求めなさい。 [ 2] B(0,8) (2) 両端の点を含む線分PQ上にある格子点の個数を求め ださい。 おうぎ形 OAB の内部および周上にある格子点の個数 を求めなさい。 ya- 10 OP(1,0) A (8,0) U B(0,8) A(8,0) <佐賀県 > 9 (1)3√7 三平方の定理とつき PQ² = 038 - OP²-8²-1²-63 V P (2)8個 (3)58個 (4).38個 【解き方】 (1) PQ=3V7 XO (1) (2) 72 <PQ² < 82 D. 7 <PQ <8 線分PQ上の格子点の座標は0,1,2,3,4,5.6メージ 7だから, 求める個数は8個 x58²1², (3) 点P、Qと同様にして、点P2(2, 0) と, AB 上に座×357 標が2である点Q2. P3 (3,0) と点 Q3, ... とする。 •P2Q2²=0Q22-OP2²=82-22=60 7 <P2Q2 <8 P3Q3²=0Qg2 -OP3²=82-32-55 PQ2=Q^OP²=82-42=48 PsQ52=0Q²2-OP52=82-52=39 また,P'(0, 1) と, AB 上に y 座標が1である点 Q 同様にして、点P'^ (0, 2) AB 上に座標が2である点 Q2. P3 (0,3) 点 Q3,・・・とする。このとき ・OB, OA に関して, 格子点は, 9x2-1=17.⑩ PQ, P'Q' に関して, 既に数え上げた格子点を除いて、 (8-1)x2-1=13...① 以下同様にして、 P2Q2. P2Q2 に関して, (8-2) x2 - 1 = 11….. ② ・P3Qs, P'Q'3 に関して (8-3)×2−1 = 9... ③ ・P4Qs, P'Q' に関して (74)×215... ④ PsQss P'Q's に関して (7-5)×21=3...⑤ ⑩〜⑤より 求める格子点の個数は, 17 + 13 + 11 + 9+5+ 3 = 58 (個) y BC (4) おうぎ形OAB の内部お よび周上にある格子点のう ち, 灰色がついていない部 7<P3Q3 <8 6<P4Q₁ <7 6 <PsQs <7 37- 96 関心の図形との融合問題 210) P1 P P' O P P₂P,P.P は軸上の点である。 (2016 問いに答えなさい。 ださい。 分は直線y=- 1x +40 2 下側でその部分の格子点の 個数は, x=0,1のとき,それぞ れ4 (個) よって, 8個 x=2,3のとき,それぞ よって 6個 れ3(個) z= 4,5のとき, それぞ よって 4個 れ2(個) x=6,7のとき, それぞれ1 (個) x=8のとき,0個 したがって, 8+ 6 +4 + 2+ 0 = 20 (個) 以上より, 灰色の部分の格子点の個数は, 58-20=38(個) n上をA→C をPとする。 に平行な直線と直線 積をSとする。 のときSの値を の座標をすべて y=- 1-1212x+4 よって2個 関数 フ 点 図 る直 として点 の面積と という CI HEW 上に 面積が

回答募集中 回答数: 0
1/3