学年

教科

質問の種類

数学 中学生

【解答求】問4の解説お願いします。三枚目の写真については、多分間違っているとは思いますが自分なりに解きました。が、答えと照らし合わせながら解き、答えが出ただけでやみくもにやったのでこの式がどういった経緯でできているのか分かりません笑

右の図1のように, 高さが200cmの直方体の水そうの中に, 3つの同じ直方体が, 合同な面どうしが重なるように階段状に並んでいる。 3つの直方体および直方体と水 図 1 そうの面との間にすきまはない。 この水そうは水平に置かれており,給水口Iと給水 給水口Ⅱ I, 排水口がついている。 給水口 A 360:20th 200cm 360 D H G B E F C 排水口 18 図2はこの水そうを面 ABCD 側から見た図である。 点E, Fは,辺BC上にある直方体の 頂点であり, BEEF = FCである。 また, 点 G, H は, 辺 CD 上にある直方体の頂点であり, CG=GH=40cmである。 この水そうには水は入っておらず,給水口Iと給水口Ⅱ 排水口は 閉じられている。この状態から、次のア~ウの操作を順に行った。 図 2 A D 200cm 給水口のみを開き、 給水する。 水面の高さが 80cmになったときに、給水口I を開いたまま給水口 II を開き、 給水する。 ウ 水面の高さが200cmになったところで、給水口Iと給水口Ⅱを同時に閉じる。 # # # B E F H G40cm 40cm C ただし、水面の高さとは,水そうの底面から水面までの高さとする。 130分 10分 給水口Iを開いてからx分後の水面の高さを ycmとするとき,x と yの関係は,右の表の 表 ようになった。 x (分) 0 15 50 このとき、次の問いに答えなさい。 ただし、給水口Iと給水口Ⅱ, 排水口からはそれぞれ一定の割合で水が流れるものとする。 y (cm) 0 20 200 = 20のとき

回答募集中 回答数: 0
数学 中学生

(4)の解き方を詳しくお願いします。 答えは、9分36秒後になります。

【問3】 光さんと妹の愛さんは、 毎週土曜日、家からの道のりが1800mのところにあるピアノ教室 に歩いて通っている。 ある日、光さんは、午前10時40分からのレッスンに間に合うように, 午前10時に家を出発した。 各問いに答えなさい。 I 光さんは,家を出発して一定の速さで8分間歩いたところで忘れ物をしたことに気がつき, それ までの2倍の速さで歩いて家にもどった。 家に着いてから2分後に再び家を出発して一定の速さ で歩き レッスン開始予定時刻の2分前にピアノ教室に到着した。 図1は, 光さんが,午前10時 に家を出発してからx分後の 家から光さんまでの距離をym として, 0≦x≦8のときのxとy の関係をグラフに表したものである。 ただし, 忘れ物をとりに家にもどった以外, 途中で寄り道な どはせず,まっすぐピアノ教室に向かって進んだものとする。 図 1 y 1800- 1600- 1400 1200 1000- 800 600 +400 thes 114a+b=0 -38076=1800 14a+b=0 -38a+b=0 -24a=-1800 -24a=0 a=75 14a+b=0 7.5 380746=0 24 1800 1628 120 120 4=500 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 X (1410) (20.0) (38,1800) 100 -240=0 a=0 b=0 75 14 300 ☆ 75 1050 (1)午前10時に家を出発してから忘れ物をしたことに気がつくまでの、光さんの歩く速さは,分 速何m か 求めなさい。 2002-40830 y= -×-20 63(2) 光さんがピアノ教室に到着するまでのグラフを完成させなさい。 1050+6=0 b=-101 1 23 136 18 (25) 2950 1250 6 4500 (3)光さんが、 再び家を出発してからピアノ教室に到着するまでの, xとyの関係を式に表しなさ 7/30 (1) =233 12 23.6×60 118 5 118 23分36秒 5CX 6012 118 5590 590 5) 3,50 45 40 450 (4) 光さんは,再び家を出発してからしばらくして, 光さんが進む道と同じ道を通って自転車で 図書館に向かう兄の健さんに追い越された。 健さんが家を出発したのが午前10時20分, 自転車 の速さが分速 200mで一定であるものとすると, 光さんが健さんに追い越されたのは,光さん が再び家を出発してから何分何秒後か求めなさい。 y=200xtb tb 394 4000 1050 2950 400 y=200-4000 1-1050+4000

回答募集中 回答数: 0
数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 中学生

この問題を教えてください!!お願いします🙇 答えは張ってあります!

201-10620 (3) A地点とB地点は直線の道で結ばれており,その距離は18kmである。 6人がA地点からB地点まで移動するために、 運転手を除いて3人が乗車できるタクシーを 2台依頼したが, 1台しか手配することができなかったので,次のような方法で移動すること にした。 ・6人を3人ずつ、第1組,第2組の2組に分ける。 第1組はタクシーで, 第2組は徒歩で, 同時にA地点からB地点に向かって出発する。 第1組は, A地点から15km離れたC地点でタクシーを降り、 降りたらすぐに徒歩でB 地点に向かって出発する。 ・タクシーは, C地点で第1組を降ろしたらすぐに向きを変えて, A地点に向かって出発 する。 第2組は, C地点からきたタクシーと出会った地点ですぐにタクシーに乗り、 タクシー はすぐに向きを変えてB地点に向かって出発する。 タクシーの速さは毎時36km 第1組, 第2組ともに歩く速さは毎時4kmとするとき、次の①, ②の問いに答えなさい。 ただし、タクシーの乗り降りやタクシーが向きを変える時間は考えないものとする。 ① 第1組がA地点を出発してからx 分後のA地点からの距離をykmとするとき, A地点を出 発してからB地点に到着するまでのxとの関係を, グラフに表しなさい。 ② 第2組がタクシーに乗ったのはA地点を出発してから何分後か, 求めなさい。

回答募集中 回答数: 0
数学 中学生

2を教えてください!

■平成20年度問題 3 ある地震を2つの地点A, Bで観測した。 下の表は、地点A, B におけるP波の 到着時刻と震源からの距離を表したものである。 次の(1), (2) の問いに答えなさい。 ただし, P波とS波はそれぞれ一定の速さで伝わるものとする。 <一表 20秒 地点 A 地点B 0 P波の到着時刻 震源からの距離 13時20分34秒 60km 13時20分54秒 180km (1) 次の①~③の問いに答えなさい。 1200m ① 下の図に, 地点 A, B における観測値を●ではっきりと記入し, それをもと にP波の到着時刻と震源からの距離との関係を表すグラフをかきなさい。 ②地震の発生時刻を推定すると,何時何分何秒になるか。 次のア~オの中から 最も適当なものを1つ選びなさい。 ア 13時20分16秒 エ 13時20分28秒 イ 13時20分20秒 オ 13時20分32秒 ウ 13時20分24秒 及 震源からの距離が100kmの地点には, S波が13時20分56秒に到着した。 下の 図の①と同じ欄に、この地点における観測値をXではっきりと記入し、それを もとにS波の到着時刻と震源からの距離との関係を表すグラフをかきなさい。 (1) km 震源からの距離[m] 地震の波の到着時刻と震源からの距離 200 150 100 50 0 13時20分 30秒 20秒 40秒 50秒 13時21分 10秒 時刻 20秒 30秒 00秒 (2) 震源からの距離が90kmの地点にP波が到着した時刻に、地震の発生を知らせるテレ ビ放送が始まった。 このテレビ放送が始まってから33秒後にS波が到着したのは、 源からの距離が何kmの地点か。 次のア~オの中から最も適当なものを1つ選びなさい。 ア 110km イ 130km ウ150km I 170km オ190km (2)

回答募集中 回答数: 0
数学 中学生

至急です! 解き方が分からないので教えて欲しいです!

4 右の図のように、底面に垂直な2つの仕切りで区切ら れた高さ42cmの直方体の水そうが,水平に置かれている。 水そうの左側から順に底面 A, 底面 B, 底面 C とする。 その底面A上には12cmの高さまで水が入っている。 この 水そうにα管,6管から同時に水を入れはじめる。 底面A, Bを分ける仕切りの高さは24cm, 底面 B, C を分ける仕 切りの高さは36cmであり, 底面 A, 底面 B, 底面Cの面 積は,それぞれ 600 cmである。 a, b 管を同時に開き, α 管からは底面A側に毎分900 cm, 6管からは底面 C側に 毎分 540 cmの割合で水を入れる。 水そうに水を入れはじ めてからx分後の底面A上の水面の高さをycmとする。 900g 高さ36cmの仕切り b 高さ24cmの仕切り 6月 底面A 底面B底面C 次の問いに答えなさい。 ただし, 水そうや仕切りの厚さは考えないものとする。 (1)水そうが満水になるのは、水を入れはじめてから何分何秒後かを求めなさい。 (2) 底面C上の水面の高さが36cmになるのは水そうに水を入れはじめてから何分後かを求めなさい。 (3)xとyとの関係を表すグラフをかきなさい。 (0≦x≦40) (4)xとyとの関係を式で表しなさい。 (24≦x≦40) (5) 底面B上にも水が入り、底面B上の水面の高さが底面C上の水面の高さと最初に等しくなるのは, 水そうに水を入れはじめてから何分後かを求めなさい。 (6) 高さ24cmの仕切りを取り外し、 水そうを空の状態にして, まずはα管のみを開いて水を入れ める。 その後, b管も開いて水を入れると, 仕切りの両側で水面の高さが等しくなり,そのときの水 面の高さは,水そうの高さのちょうど半分であった。 このとき, 6管を開いたのは α 管を開いてから 何分何秒後であったかを求めなさい。

回答募集中 回答数: 0
1/146