学年

教科

質問の種類

数学 中学生

この解答があっているか見てください!! ご回答よろしくお願いします!

(2) たしかめ 次の1次関数のグラフを 右の図にかき入れなさい。 (1) y 補充問題 p.248 3 また,それぞれのグラフは, 4 2 y=-2xのグラフをどのように 平行移動させたものですか。 DC 8 -4 -2 O 2 4 (1) y=-2x+3 -2 (2)y=-2x-5 ・4 y=-2x 1次関数y=ax + b の aやbの値は,グラフ上では それぞれどんなことを表しているのかな? 1次関数y=ax + b の定数の部分は, x=0のときのyの値であり, グラフと Joy軸との交点 ( 0, b) の y 座標である。 このbを1次関数のグラフの切片と いう。 せっぺん y y=ax+b 数学メモ 切片 「切片」のことを 「y切片」という ことがあります。 (0, b) y=ax -IC O たしかめ次の次数のグラフについて, y軸との交点の座標と切を、 225 それぞれ答えなさい。 補充問題 p.248 4 (1) y=3x-2 (2)y=-x+6 (3) y=40 次に, 1次関数y=ax+bで,aの値がグラフ上ではどんなことを -4 表しているのか調べてみよう。 ) yy=2x+3 ーる 1次関数y=2x+3では, 変化の割合は (Yの増加量) 8 け =2 12 ( xの増加量) 6 20 だから、xの値が1増加するときの値は 12 4 2 増加する。 2 → 1 また, 1次関数の変化の割合は一定だから, /22 グラフでは,右の図のようにグラフ上の1つの点 DC 0 2 4 から,右へ1だけ進み, 上へ2だけ進む。

解決済み 回答数: 1
数学 中学生

至急です!!! 解き方と答えをお願いします🤲

(3) 右の図1のように 長方形ABCDの2本の対角線の交点を とします。 点口を通り, 長方形ABCDの辺ADと平行な直 線と辺AB, 辺DCとの交点をそれぞれP Qとし点を通り 長方形ABCDの辺ABと平行な直線と辺AD, 辺BCとの交点 をそれぞれR, Sとします。 このとき, 長方形ABCDの中に できた8つの三角形はすべて合同な直角三角形になりました。 それらの直角三角形を図1のように、アークとします。 図1 A ア P イ B ク ウ R S O H キ オ ひなさんは,直角三角形アを平行移動 対称移動・回転移動させて,ほかの直角三角形にぴった り重ねることを考えています。 次のひなさんとれんさんの会話を読んで, あとの① ② に答えなさい。 R ● ひな 「右の図2で,直角三角形アを平行移動すると. 重ねることができるのは,イークのどの直角三角 形かな。」 図2 A ク ア れん 「平行移動は、一定の方向に動かす移動だから, 直角三角形 (a) に重ねることができるね。」 P イ ウ ひな 「そうだね。」 B カ キ S H D オ Q 0 れん「では,図2で, (b) 直角三角形アを,対称移動を1回した後,点を中心とした180°の回 転移動を1回して、最後に重ねることができるのは,アークのどの直角三角形だろう。」 ひな 「ちょっと難しそうだけど, 考えてみよう。」 ①会話の中の (a) にあてはまる記号を, イ~クから1つ選び, 答えなさい。 ② 下線部(b)について, 直角三角形アを, 対称移動を1回した後, 点〇を中心とした180°の回転移 動を1回して最後に重ねることができる直角三角形を, アークからすべて選び、記号で答えな さい。

未解決 回答数: 1
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

2 Sさんのクラスでは,先生が示した問題をみんなで考えた。 次の各問に答えよ。 [先生が示した問題] a b を正の数とする。 右の図1で, △ABCは,∠BAC=90°, AB=acm, AC=bcmの直角三角形である。 右の図2に示した四角形AEDCは, 図1において,辺BCをBの方向に延ばした 直線上にありBC=BDとなる点をDとし, 図1 図2 A B A B △ABCを頂点Bが点Dに一致するように平行移動させたとき, 頂点Aが移動した点をEとし,頂点Aと点E,点Dと点Eを それぞれ結んでできた台形である。 四角形AEDCの面積は, △ABCの面積の何倍か求めなさい。 〔問1] 次の |の中の「う」に当てはまる数字を答えよ。 [先生が示した問題]で,四角形AEDCの面積は, △ABCの面積の う 倍である。 Sさんのグループは, [先生が示した問題] をもとにして,次の問題を作った。 [Sさんのグループが作った問題] a, b, xを正の数とする。 E D 右の図3に示した四角形AGHCは,図1において, 辺ABをBの方向に延ばした直線上にある点をFとし, 図3 C △ABCを頂点Aが点Fに一致するように平行移動させたとき, 頂点Bが移動した点をG, 頂点Cが移動した点をHとし, 頂点Cと点H点Gと点Hをそれぞれ結んでできた台形である。 右の図4に示した四角形ABJKは,図1において 辺ACをCの方向に延ばした直線上にある点をIとし, △ABCを頂点Aが点Iに一致するように平行移動させたとき, 頂点Bが移動した点をJ, 頂点Cが移動した点をKとし, 頂点Bと点J,点Jと点Kをそれぞれ結んでできた台形である。 図3において, 線分AFの長さが辺ABの長さのx倍となる ときの四角形AGHCの面積と, 図4において,線分AIの 長さが辺ACの長さのx倍となるときの四角形ABJKの 面積が等しくなることを確かめてみよう。 A B F G 図 4 K I J C A B 〔問2〕 [Sさんのグループが作った問題] で, 四角形AGHCの面積と 四角形ABJKの面積を, それぞれα, b, x を用いた式で表し, 四角形AGHCの面積と四角形ABJKの面積が等しくなることを証明せよ。 -2-

回答募集中 回答数: 0