学年

教科

質問の種類

数学 中学生

青いところに書いてあるのが、解説です。このとき方しかありませんか?理解しずらいです。お願いします😭

lau マイページ 数学 中学生 起死回生^_-☆ 解決済みにした質問 000000 35分 18:28 タイムライン 質問 青いところに書いてあるのが解説なのですが、 この解説あま り納得しないというか、 こーゆー系の問題はこれでしか 解く方法ありませんか? お願いします (;;) CHOSSEIO. SOOSEN CRITEV, Owen すべてにでる。 00090 15分 T cy= 5 6台の機械で50分間かかる作業がある。この作業を6台の機械で同時に始めた。 作業を始め てから35分後に1台の機械が故障したため,残りの作業を5台の機械で続けて行い、作業を終 ( 2016年岐阜 ) えた。 1台の機械が故障してから何分後に作業を終えたか求めなさい。 ただし、6台の機械は すべて同じ性能で、途中で故障したのは1台のみとする。 仕事量=台数 × 時間 61台あたり5分 @かかるじかん= 36% 台数 まだ回答はありません 公開ノート COSME @ 50% 編集 20 時間前 Campus フラットが気持ちいいノート 発売記念 6×50=300 350で6×35=210が終わる ( 90÷5=18 ? 2つの方法で参加できる! パッと見てわかるまとめノート 便利な使い方アイデア プレゼント MANA 18分後] 残り 90 VEXI 答えなさ 3右の 中点 閉じる マイページ 12ca

回答募集中 回答数: 0
数学 中学生

4の答えは、x=二分の23、y=240です。5は五秒と8分の143です。解説お願いします😭

128 ・2 42 太陽の黒点 B 第三問 図1において, 図形ABCDEFは, 長方形から直角三角形と正方形をそれぞれ1つずつ切 り取ってできた図形であり,BC=42cm, CD=DE=EF = 8cmです。 点Pは点Bを出発し, 秒速 2cmで辺BC上を点Cまで動き, 点Cに到着したら停止します。 点Pを通り、辺BCに垂直な直線を l とします。 直線ℓが図形ABCDEFを2つの図形に分けるとき, 点Bを含む図形をS,点Cを含む 図形をTとします。 点Pが点Bを出発してからx秒後の図形Sの面積をycm²とします。 図IIは,点Pが動き始めてから 停止するまでのxとyの関係をグラフに表したものです。 0≦x≦8 では原点を頂点とする放物線, 8≦x≦17, 17≦x≦a ではそれぞれ直線となっています。 なお, 点Pが点Bにあるときのyの値は0 とし、点Pが点Cにあるときのyの値は図形ABCDEFの面積とします。 このとき、 あとの1~5の問いに答えなさい。 図 Ⅰ y=ax+b 16 128 板と遮光板 接眼レンズと に合わせて投 のである。 図形 S l 64 42 A16秒後 P→ 9 2cm/ 14 128 1 図ⅡIのグラフの中のαの値を求めなさい。 1288 y=ax² 2 辺AFの長さを求めなさい。 図形丁 16 128=64a 3x640=1848 f= 2x² 47 34秒経 4 2 n 8 tie 18 3 xの変域が 0≦x≦8 のときのyをxの式で表しなさい。 64 672 30 C 16 42 小さい 32 tis 図ⅡI (8, 198 )( 17, 1) + y (cm²) 128 128 [12 240 0 最も適切なも 128 64 x=17 (8,128) y = 8 222 480410 16 125= ご 128 2256 270 x 17 16 4 図形Sの面積が図形ABCDEFの面積の1/12 となるときのx,yの値をそれぞれ求めなさい。 480 192 16 10 256 240 x=15 ×16=240 16 16 96 7 4 5 図形Sの面積と図形Tの面積のうち,大きい方から小さい方をひいたときの差が380cm2 となる のは,点Pが動き始めてから何秒後と何秒後ですか。 16x=240 x=15 a x (秒) =15 ま Jala+b I 16240 16 80

回答募集中 回答数: 0
数学 中学生

3番教えて頂きたいです!

右の図1のように, 台形ABCDと長方形EFGH がある。 台形ABCD は, 1辺が8cmの正方形 ABID と, <CID=90°の直角二等辺三角形CDI に分けることができる。 また, AB=EF,BC=FG である。 右の図2のように, 台形ABCDと長方形EFGH を,4点B,C,F,Gがこの順に直線ℓ上にある ように置く。長方形EFGHを固定し,台形 ABCD を直線ℓにそって矢印の方向に毎秒2cm の速さで平行移動させ,点Cが点Gと重なった ときに停止させる。 ASTA JNetis B F IC 点Cが点Fと重なったときからx秒後の台形ABCDと長方形EFGHが重なった部分の面積を ycm² とする。 このとき,次の(1)~(3) に答えなさい。 ただし, 台形ABCDと長方形EFGHは同じ平面上にあり, #100101-20 直線lに対して同じ側にあるものとする。〈京都〉 (1)x=3のときのyの値を求めなさい。 また,x=5のときのyの値を求めなさい。 (各5点) ABCDの映像 図1 A (ア)xに比例する 13 (ウ)xに比例しないが,xの一次関数である A(オ)の関数ではない B 図2 A D D E F E (イ)xに反比例する (エ)xの2乗に比例する H G H TOM (2) 次の文章は,xとyの関係について述べたものである。 文章中の ① ②に当てはまるも のを,下の(ア) ~ (オ) からそれぞれ1つずつ選びなさい。 (各5点) 0≦x≦4のとき,yは①。また,4≦x≦8のとき,yは② G () TESTEJA >$2001 - * (A) の点 AP 垂直な直線が、辺ABま をQ、辺BCまたはCDと (3)の値が2から3まで増加するときのyの増加量の6倍が,xの値が3から4まで増加するときのy の増加量と等しくなる。このときのαの値を求めなさい。 (10点) 0x12のときは0とする

回答募集中 回答数: 0
数学 中学生

(2)のイ教えて欲しいです🙏 なんでその計算をしているかが分かりません。

3 図1のように,縦20cm,横30cm,高さ20cmの直方体の形をした容器がある。容器には、 2つの給水管 A,Bがついており,それぞれ一定の割合で水を入れることができる。容器に水 が入っていない状態から給水管を開き、容器が満水になるまで水を入れていく。 給水を始めて からx秒後の容器の底面から水面までの高さをycmとするとき,それぞれの問いに答えな さい。 ただし、容器は水平に固定されており, 容器の厚さは考えないものとする。 図1 給水管 A 20 cm -30cm- 1 容器に水が入っていない状態から,給水管Aを開き、 毎秒 200cm²の割合で給水を始め, 6秒後までのxとyの関係をグラフに表したところ、図2のようになった。 給水を始めてか ら6秒後に給水管Aを開いたままで給水管Bを開いた。 給水管B を開いてから12秒後に水 面までの高さが14cmになったところで給水管Aを閉じ, 給水管Bだけで容器が満水になる まで給水を続けた。 次の問いに答えなさい。 Jha 給水管 B (1) x=3のときのyの値を求めなさい。 xの変域 (2) 表は, 給水を始めてから容器が満水になるまでのxとyの関係を式に表したものである。 アウにあてはまる数または式を, それぞれ書きなさい。 また,このときのxとyの関係を表すグラフを,図2にかき加えなさい。 表 図2 24(cm) 0≤x≤6 6 ≤x≤18 18 ≤x≤ イ '20cm y= y=x-4 y= It ア 20 16 12 8 4 O HE 6 12 18 24 30 (秒)

回答募集中 回答数: 0