学年

教科

質問の種類

数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

至急です! 図形の問題です。⑴の②と③のやり方を教えてください。答えは分かりません。お願いします🥺

[2]太郎さんと花子さんは、ロボット掃除機が部屋を走行する様子を見 内は,いろいろな て、動く図形について興味をもった。 次の 図形の内部を円や正方形が動くとき、円や正方形が通過する部分につ いて考えている, 太郎さんと花子さんの会話である。 花子: 長方形の内部を円や正方形が働くとき、 正方形は、長方形の内部をくまなく通過できるね。 でも、円は、長方形の内部で通過できないところがあるよ。 正方形は, どんな図形の内部で もくまなく通過できるのかな。 太郎:どうかな。 三角形の内部では,円も正方形も通過できないところがあるよ。 いろいろな図形 の内部を円や正方形が動く場合, 通過できるところに違いがあるね。 花子:直角二等辺三角形の内部を円や正方形が動くときについて,真上から見た図をかいて考えて みよう。 XZ=YZ, ㄥXZY=90°の直角二等辺三角形XYZの内部を,円0,正方形ABCDが動くとき, 各問いに答えよ。 ただし, 円周率はπとする。 (1)図1で,円〇は辺XY, XZに接しており、2点P,Q図1 ✗ はその接点である。 また, 点Rは直線XOと辺 Y Z との交 点である。 ①~③の問いに答えよ。 ① ∠POQの大きさを求めよ。 ② 線分XR上にある点はどのような点か。 「辺」と「距 離」の語を用いて簡潔に説明せよ。 ③円の半径が2cmであるとき, 線分XP の長さを求め よ。 Y 450 P N か 0 Z

回答募集中 回答数: 0
数学 中学生

(2)①何故APとAQの和がPQになるのかが分かりません。PQは直線では無いので足すだけで出るのが不思議です。 ②周の長さが急に出てきているのがよくわかんないし、それが弧の長さになっているのもよく分かりません。 (3)重なる時P、Qが進んだ和が60cmと等しくなるのがよく分... 続きを読む

9 右の図の円 0 は、円周 の長さが60cmである。 2点P、 Qは同時に円周 上の点Aを出発し、点P は円周上を時計回りに毎 秒2cmの速さで、 点Qは円周上を反時計回 りに毎秒3cmの速さで動くものとする。 次 の問いに答えなさい。 < 7点×4〉 (島根) (1) 点PがAを出発して円周上を2周する のに何秒かかりますか。 点Pが円周上を2周するときに進む道のりは、 60×2=120(cm) 点Pは毎秒2cmの速さで動くか ら、 120cm 進むのにかかる時間は、 120÷2=60(秒) (2)2点P Qが出発し 60秒 てから4秒後について、 ① 短いほうのPQの 長さを求めなさい。 P Q 4秒後に、 AP=2×4=8(cm)、 AQ=3×4=12 (cm) になるから、 短いほうのPQ の長さは8+12=20(cm)で、 長いほうのPQの長 さは60-20=40(cm) ②①のPQに対する中心角∠POQ の大 きさを求めなさい。 20cm 20_1 ①のPQの長さは、円0の周の長さの、60=3 おうぎ形の弧の長さは中心角の大きさに比例す るから、求める中心角の大きさは、 360°x- 0x1/3=120° 120° (3) 点と点Qが初めて重なるのは、2点 P、QがAを出発してから何秒後ですか。 秒後に初めて重なるとする。 初めて重なったと き、2点PQが進んだ道のりの和は、円0の円周 60cmと等しくなるから、 2xx+3xx=60 5.x=60 x=12 12秒後

回答募集中 回答数: 0