学年

教科

質問の種類

数学 中学生

画像の赤丸がついている問題 の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

画像の3、4、5、6の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

(2)と(3)お願いします! ⑵の答え👉🏻4秒後 ⑶の答え👉🏻3分の80 . ア . エ です!

100 北点 4 バスは, P地点に停車しており, この道路を東に向かって進む。 次の式は, バスが 東西に一直線にのびた道路上にP地点がある。 P地点を出発してから30秒後までの時間と進む道のりの関係を表したものである。 式バスについての時間(秒) と道のり (m) (道のり) = 1 × (時間) 2 自転車は,P地点より西にある地点から,この道路を東に向かって, 一定の速さで進んで いる。自転車は,バスがP地点を出発すると同時にP地点を通過し,その後も一定の速さで 進む。次の表は,自転車がP地点を通過してから8秒後までの時間と進む道のりの関係を 表したものである。 表 自転車についての時間 (秒) と道のり (m) 8 時間 道のり 50 y (m) 0 225 0 4 25 qº 下の図は,バスがP地点を出発してから30秒後までの時間を横軸(x軸), P地点から 進む道のりを縦軸(y軸) として,バスについての時間と道のりの関係をグラフに表したものに、 自転車の進むようすをかき入れたものであり, バスは,P地点を出発してから25秒後に 自転車に追いつくことを示している。 75 1-5- 25 24 25 140 バスについての グラフ 自転車についての グラフ 30 x (秒) み 25 [gv] 4/25

回答募集中 回答数: 0