学年

教科

質問の種類

数学 中学生

⑥の問題で、右側の解説の…①と…②の式がなんでその式になるのかが、わからないので教えてほしいです🙇 (…①と…②は、右側の解説の一番上にあります!)

E ④ 今年度の男子 解答と解説 23 さて、次のように考えることもできる。 道のりの合計から、x+y=2100 5時間40分- 1 時間 ←54号 3) 時間の合計から、 I 140 70 + y=22...④ ③、④を解いて、 x=1120, y=980 走った時間は、 1120 1408 (分) 歩いた時間は、 1980 70 =14 (分) だから、1+1=112834 ...D 15 + 1 = 17 ... 2 3 ①の両辺に 15をかけると, 5x+y=65 ... ③ ②の両辺に15をかけるとェ+5y=85 ··· ④ 2 章 ③.④の連立方程式を解くと, x=10,y=15 ポイント 速さの問題では、時間の単位, 道のりの単位をそろ える。 7 (1) 1日で36Lを30日間 200 人で行うので。 36×30×200=216000 (L) 4 (1) 昨年度の全体の生徒数について, x+y=665 ① 今年度の増えた生徒数に注目して, 4 5 100~ 100y=30... ② ②の両辺に 100 をかけると. 4.x+5y=3000...③ ① ③の連立方程式を解くと, r=325,y=340 別解 ② は,今年度の全体の生徒数に注目して 104 100 105 100y=665+30 両辺に100をかけて整理して 104+105g=69500 とすることもできる。 (2) 今年度の男子と女子の生徒数は, 7325× (1+ 4 100 =338 (人) 女子 340×1+ (1+ =357 (人) 5 100 580円のお菓子を1個,100円のお菓子を4個買 う予定だったとする。 x (2) 取り組みAを行うと, 節約できる水の量は1 人あたり 6×30=180(L) である。 取り組み A を行った人数を1人, C を行った人数を人と すると, 取り組み AとCで節約した水の量は, (1)より, 261000-216000=45000 (L) なので, |x+y=200 ・・・① 180x+360y=45000 ... ② この連立方程式を解くと, x=150,y=50 (3) 人数が自然数とならない場合は適さない。 1 男子の人数を人, 女子の人数を人とすると, x+y=180 ① 自転車で通学している人数について, 0.16.x=0.2y 両辺に100をかけて整理すると, 4.r-5y=0 ... ② ①,②の連立方程式を解いて、 x=100,y=80 男子の自転車で通学している人数は, 0.16×100=16(人) これより, 全部で 16×2=32(人) ミス注意! 求めるものは, 男子と女子の人数で はなく、 自転車通学をしている人数である。 p.38~39ステージ3 合わせて20個買うので, x+y=20...D 反対にして買ったときと予定のときの金額につい 1 ウ て, 80y+100.x=(80+100y)-40 ...② ②より, 20-20y=-40 両辺を20でわると, r-y=-2 ③ ① ③の連立方程式を解くと, x=9, y=11 ⑥6 AB間の道のりをækm, BC間の道のりを ykm とする。 全体の時間について, 連立方程式をつくる 2 (1) x=3, y=-2 (3) x=4,y=5 (5) x=1,y=-1 (7) x=9,y=6 (2) x=7, y=2 (4) x=2,y=-1 (6) x=4,y=7 (8) x=6,y=-5 3 (1) x=-3, y=-4 (2) x=-3, y=2 (3) ミー- 2 3' y=4 (4) x=5,y=-4 a=1, b=4 4 時間 20分=- =123 時間 ← 4+1=1

未解決 回答数: 0
数学 中学生

分かるところだけでいいので教えてください🙇‍♀️ 明日までなんです💦 お願いします

注意 1 答えに、 が含まれるときは ただし、 をつけたままで答えなさい。 "の中はできるだけ小さい自然数にしなさい。 用いなさい。 1 次の (2) の問いに答えなさい。 (1) 次の計算をしなさい。 ①5 - 8 (一部) (4) ③ 4x-9y+2(2x+5y) N But my ④ 2,14÷√2 76 (2) 五角柱の辺の本数を求めなさい。 28217 2 次の(1)~(5)の問いに答えなさい。 (1) 右の図のように、円周上に2点A Bがある。 点 Bを通る円Oの接線上にあり, OP=APとなる点Pを 求めるときに必要な作図を、次のア~カの中から2つ選 び記号で答えなさい。 ア 線分OAの垂直二等分線 ウ 線分OBの垂直二等分線 オ 線分ABの垂直二等分線 イ 点を通る直線ABの垂線 エ点Aを通る直線OAの重線 カ 点Bを通る直線OBの重線 B (2) 747の大小を不等号を使って表しなさい。 40 (3) (46)"を展開しなさい。 (45)(45) a²-4ab-4ab-1662 a² Ɛab rab" (4) 関数y=3x-5について xの増加量が7のときのyの増加量を求めなさい。 (5) あるバスは, A地点からB地点を経由してC地点まで走った。 A地点からB地点までの道 のりを毎時αkmの速さで走ったところ2時間かかり, B地点からC地点までの道のりを毎時 bkmの速さで走ったところ3時間かかった。 このときバスが走った道のりは何kmか. 4. b を使った最も簡単な式で表しなさい。 f 146 6 km 20. 3次の(1)(2)の問いに答えなさい。 (1) 右のデータは、あるクラスにおけるA班の生徒 6人と、 B班の生徒7人の漢字テストの得点を 左から得点が低い順に整理したものである。 データ Aの生徒の漢字テストの得点 18 20 26 27 27 30 ( 単位点) 12 ① A班における第四分位数を求めなさい。 B班の生徒の漢字テストの得点 19 21 22 26 27 29 (単位点) 29 ② 分布の範囲が大きいのはA班 B班のどちらであるといえるか。 A. Bの記号で答え、 その 分布の範囲も書きなさい。 (2) 1から6までの目がある大小2つのさいころを同時に1回投げる。 大きいさいころの出た目 の数をα 小さいさいころの出た目の数をとする。 a + b = 8 となる確率を求めなさい。 ただし、それぞれのさいころについて どの目が出ることも同様に確からしいものとする。 (2346 2662 図1のように、 4. bの値による条件が書かれたマスがあり スに書かれた条件を満たしているとき、そのマスに色を塗る。 例えば, 2.6=4のとき、 図2のようになる。 さいころを投げたあと、両方のマスに色を塗る確率をP. どちら のマスにも色を塗らない確率をQとするとき。 PxQの値について どのようなことがいえるか。 次のア~ウの中から正しいものを1つ 選び 解答用紙の )の中に記号で答えなさい。 1 3.5 5.3 が2の 倍数 bが素数 が2の 倍数 みが素数 また、P,Qをそれぞれ分数で示し、 選んだものが正しい理由 を説明しなさい。 PxQt 1 PXQ=16 ウPXQ=36 2-

未解決 回答数: 1