学年

教科

質問の種類

数学 中学生

確率の問題です。⑵⑶⑹の問題の式が分かりません。教えてください

18 〈組として取り出す問題〉 次の問いに答えなさい。 □ (1) 袋の中に,赤玉,青玉,黒玉, 白玉がそれぞれ1個ずつ入っている。 この袋の中から玉を同時に2個 取り出すとき, 取り出した2個の玉の中に, 白玉がふくまれる確率を求めなさい。 □(2)1,2,3,4の数字を1つずつ書いた4枚のカードがある。 このカードをよくきって同時に2枚を取 り出すとき,取り出したカードに書かれた2つの数の和が偶数になる確率を求めなさい。 〈 鹿児島〉 □ (3) あたり2本, はずれ3本でできている5本のくじがある。 このくじを同時に2本ひくとき 2本とも あたりである確率を求めなさい。 〈佐賀〉 □ (4) 数字を書いた5枚のカード1, 2, 3, 4, 5 がある。 この5枚のカードをよくきって, その中か ら同時に2枚を取り出す。 取り出した2枚のカードに書いてある数の積が偶数になる確率を求めなさ い。 < 愛媛 > □ (5) A, B, C, Dの4人の中からくじびきで3人の選手を選ぶとき, 選ばれた3人の中にAが入ってい る確率を求めなさい。 □(6) 赤玉3個, 白玉2個入った袋の中から同時に2個の玉を取り出すとき, 少なくとも1個は赤玉を取り 出す確率を求めなさい。

未解決 回答数: 1
数学 中学生

この問題私立の過去問の大問2️⃣の(5)です。 こういう問題は捨てていいと思いますか? 似たような問題やっても全然できませんでした。

ってきたんだか あとか (5)下の図のように、黒い正三角形を積み上げていく。 次の会話を読んで ア イにあてはまる式の組み合わせとして正しいものを選びな さい。 1番目 2番目 3番目 1-2421- 628200 Aさん:黒い正三角形を、1番目の図形は1個, 2番目の図形は3個、3番目の図形は6個使って いるね。 Bさん 2番目の図形の黒い正三角形の個数は, 1+23 (個) 3 図のように、箱には,1,2,3,4,5の数字が1つずつ書か 910の数字が1つずつ書かれた玉が5個入っている。 箱 A. Bから1個ずつ ら取り出した玉に書かれた数を4. 箱Bから取り出した玉に書かれた数をb 箱A 問いのアークにあてはまる数字をマークしなさい。 箱B 2 3番目の図形の黒い正三角形の個数は, 1+2+3=6 (個) だね。 Aさん ということは,n番目の図形の黒い正三角形の個数は、1からnまでの整数の和になるね。 at O Bさん 1+2+3+…+n (個) になるけどもっと簡単に表せないかな? (1) a+b=10 になる確率は, ア イウ である。 & Aさん:次のように、1からnまでの整数の和を2つたし合わせると, 001 0 (2) √ab が整数となる確率は, エ オカ である。 イ 個と表せるね。 1 + 2 + 3 + … + (n-1) + n 土) n +(n-1)+(n-2 +... + 2 + 1 Hom になって, (n+1) が ア 個現れるよ。 (n+1) + (n+1)+(n+1) +... +(n+1) +(n+1) Bさん これを利用すると, n番目の図形の黒い正三角形の個数は, (2) ア:n+1 イ: (n+1)2 11 ①アin イ: n(n+1) ③7:n イ: n(n+1) 2 (5) 7:n イ: n(n+1)2 2 ④:n+1 (n+1)2 イ: (3)座標平面上において,y=ax+b と y=bx の交点のx座標- 10

回答募集中 回答数: 0
数学 中学生

8(3)と11と13(1)(2)のやり方を教えてほしいです🙇‍♀️

0 35 ① 36 ② 37 (3) 38 ④ 39 5 40 641 ⑦ 428 439 44 〔式の計算 (1・2年)〕 7 次の計算をしなさい。 (1) 11 (3a-1)/(a+1) 4 2x-1x+1 (2) 3 +. [ たちばな〕 (13) ☆2の値を求めなさい。 9y= -(PS・数学 4 〔栄徳〕 1~ 〔名工〕 太字 数字 の意 では 2-5zをπについて解きなさい。 3 10 次の問いに答えなさい。 (1)1本円の鉛筆5本と1冊4円のノート3冊の 合計の金額は250円よりも高い。 これらの数量の関 係を不等式で表しなさい。 [修文学院〕 つい 23- [啓明学館〕 4 【産だ の個数は 6 (4) 2 かで、素数は (3)-1+2x+4 2x-3yx3-2(x-y) 3x+y_2x-y [瑞穂] 9 [桜花] (5) 〔至学館〕 5 3 G (6)(3ab)3ab2xa5 〔椙山〕 (7)(20)÷1/1/30°×1-(°6) 2} [名古屋] ●位の数をそれぞ (2) ある整数から3を引いて5倍すると, 35より大 きく42より小さくなるという。 この整数は [アイ] である。 〔誠信〕 11 T君は家から学校までの道のりを、行きは平均時 速10kmで走り, 帰りは平均時速4kmで歩いて帰っ た。 行きと帰りを合わせた平均時速を求めなさい。 た だし, 行きと帰りの道のりは同じとする。 〔東邦] 12468, 10, 12のような連続する5つの偶数 の和が10の倍数になることを,次のように説明した。 文章中の6にあてはまる数を,下のア~ エからそれぞれ選びなさい。 の ごと に 「い 上 (8) (3xy)-9x (-2x) 3 〔高蔵〕 なお、3か所のbには,同じ数があてはまる。 [人環大附岡崎〕 [へ] い。ただし、 (9) 3(3x+4y)-2(2x-6y). 〔名工〕 (10) 5(x-2y)- (3x-y) [名国際] コである。 [社 ■値はいくつお 2x+5y x-y (11) 3 4 [名城大附〕 /(S) 連続する5つの偶数のうち、いちばん小さい偶数 を2n とすると,いちばん大きい偶数は2n+α と表される。 入 (12) 2x+5y+ 3 -3x+y 4 〔栄徳〕 このとき, 連続する5つの偶数の和は10(n+b) と表される。 〔名女 (13) 全部で 〔愛産大三 . 4つ り、2+30 (15) 9a2bx2a÷6b (16) 2(4a-5b)-(3b-a) 3 2x+5x-5 6 主人 --2 [聖霊] (14)3(5x-4y)-2(7x-y) 〔〕 〔誠信] n+b は整数だから, 10 (n+6)は10の倍数 である。 したがって, 連続する5つの偶数の和は、10の 倍数である。 は分散である。 動 [修文学院〕 a ア. 2. 4 ウ. 6 エ.8 までのイベ (17) 2x-y x-4y b ア. 2. 4 ウ.6 エ 8 の差を記録 4 [黎明〕 5 (春日 (18) 3x-1 x-5 42 [日福大付〕 土曜日 日曜 13 1から4までの数字が書かれた面積3cm 2 の三角 形があり、 図のように並べていく。 あとの問いに答え さい 95 ② ) 〔高蔵〕 (19) (-2a)³× (-65)÷2(ab)² 〔人環大附岡崎〕 +12 コである。 (20) 24a626ab1/12a2 a² 0-30 (21) 3a-ba-2b 43 8 次の問いに答えなさい。 [光ヶ丘〕 [愛産大三河] 本 A 12/3 13/34 1番目 2番目 3番目 4番目 L 12/34/12/ かった日 人数の OFF (1) x+3y 2 xy 15+ の値を求めなさい。 X Y 〔椙山〕 (2) x=2024のとき, X I + の値を求めなさい。 88 184 253 [桜花] (3) 記号☆をa b =α+62と定めるとき, 5番目 6番目 -35- (1) 2024番目の図で一番右の三角形に書かれた数字と して正しいものを,次のア~エから1つ選びなさい。 ア. 1.2 ウ.3 エ. 4 (2) 並べた図形の面積が99cmとなるとき 1の数 字が書かれた三角形を何枚用いているか,正しいも のを,次のア~エから1つ選びなさい。 te T 2 a

未解決 回答数: 1