学年

教科

質問の種類

国語 中学生

現代文の問題が分かりません!!! 教えてください!!!

グラフ1 高校生の平日1日あたりのインターネット 利用時間の平均値の推移 220 213.8 210 207.3 192.4 190-185.1 平成26 平成27 平成25 平成29 平成29年度青少年のインターネット利用環境実態調査 |調査結果一内閣府」 グラフ2 平成29年度の高校生の平日1日あたりの インターネット利用時間の分布 5時間以上 26. 24時間以上5時間未満 10.3 3時間以上4時間未満 | 17.4 | 2時間以上3時間未満 20.4 2時間未満 使っていない 10.2 わからない 2.0 23.7 0.0 5.0 10.0 15.0 20.0 25.0 30.0 「平成29年度青少年のインターネット利用環境調査 調査結果 内閣府 |グラフ3 私たちのクラスの生徒の平日1日あたりの 5時間以上 インターネット利用時間の分布 4時間以上5時間未満 25.0 3時間以上4時間未満 20.0 2時間以上3時間未満 115.0 2時間未満 12.5 使っていない 0.0 わからない 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 学習委員によるアンケート調査をもとに作成」 たなか 次の【文章】は、生活委員の田中さんが書い (1) □Aに入る言葉を簡潔に書け。 (1点)ワン 報告文の一部で、グラフ1~3は、そのた めに用いた資料です。 これらを踏まえて問い に答えなさい。 資 タ 2 【文章】 ■ X・Yに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 す = (20点) 2 Y=もし ア X=しかし イ X=ところで ウ X=もし Y=しかし Y=たとえば エX=たとえば Y=ところで 2 グラフは、平成26年度から20年度にかけての「高校 生の平日1日あたりのインターネット利用時間の平均値 の推移」を表しています。 利用時間が、年々 A ことが分かります。 現代は情報社会が進展していく過 程にあるので、これは当然だと言えるでしょう。 1日あたりの平均利用時間が30分を超える のは長すぎるのではないでしょうか。 グラフ2は、「平成29年度の高校生の平日1日あた りのインターネット利用時間の分布を示しています。 「5時間以上」が26・1%、「4時間以上5時間未満」 が10.3%となっています。 両者を合わせると38・4% になります。つまり、 Bが、1日に4時間以 上インターネットを利用しているのです。 04 グラフ3は、「私たちのクラスの生徒の平日1日あ たりのインターネット利用時間の分布」を示したもの です。これを見ると、 Cの人が、1日に4時間 以上インターネットを利用していることが分かります。 すいみん 私は、平日に4時間以上もインターネットを利用す るというのは長すぎると考えます。 以下に、その理由 を述べます。私たちの平日の生活を振り返ってみま しょう。人によって多少の違いはあるでしょうが、通 学に要する時間も含めると、登校から帰宅まで10時間 程度はかかります。 睡眠時間を7時間、食事や入浴、 その他の細々したことに使う時間を2時間とすると、 残りは5時間しかありません。4時間以上イン ターネットに使ってしまったら、学習のための時間を 十分にとることは、かなり難しくなるでしょう。 内閣府の調査によると、高校生のインターネットの 利用内容は、コミュニケーション、動画視聴、音楽視 聴が主だということです。 現在、1日の利用時間が4 時間を超えている人は、これらのうち、自分にどうし ても必要なものを残して、他はある程度制限したほう がいいのではないでしょうか。自分なりのルールを作 り、節度のある利用を心がけたいものです。 ■BCに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 (20点) C=過半数 ア B=2人に1人以上 イ B=2人に1人近く ウ B=3人に1人近く エ B=3人に1人以上 C=4人に1人程度 C=ほとんど C=半数以上 線部「学習のための時間を十分にとることは、 かなり難しくなるでしょう。」を、次の条件に従ってよ り強い主張をこめた表現に書き改めよ。 条件1 「いったい」という言葉を使い、 「......か。」 の形で書く。 条件2 二十字以上、三十字以内で書く。 (2点) ⑤ 【文章】により説得力を持たせるためには、どん なことを示す資料を付け加えたらよいか。 最も適当 なものを次の中から選び、記号で答えよ。 (20点) ア 保護者のインターネット利用内容 イ中学生のインターネット利用時間 ウ 高校生のインターネット利用内容 高校生と中学生のテレビの視聴時間

回答募集中 回答数: 0
理科 中学生

(2)を教えてください!答えはイ、エです。

6 令子さんは 6月の晴れた日に、 北緯 32.5° の熊本県内のある地点で, Ⅰ~ⅣVの順で日時計を作成 して時刻を調べる実験を行った。 (熊本県 [改題]) 画用紙に円をかき 時刻の目安として円の中心から 15° おきに円周に目盛りを記した時刻盤を 作成した。 時刻盤の中心に竹串を通し, 竹串と時刻盤が垂直になるようにして固定した。 図1のように時刻盤を真北に向け、 図2のように竹串が水平面に対して観測地の緯度の分だけ 上方になるようにして固定した。 なお、 図2は、 図1を東側から見たものであり、竹串の延長線 上付近には北極星があることになる。 10分まで竹串の影を観察した。 Ⅳ 図3のように時刻盤の目盛りと竹串の影の位置が重なった12時10分から1時間ごとに, 18時 図2 図1 時刻盤 図3 ア 竹串 竹串 西 32.5゜ 1. 北 南 東 ウ 竹串の影 15時10分の時刻盤に映った竹串の影の位置として最も適当なものを図3のア~エから一つ 選びなさい。( (2)実験で用いた日時計について、正しく説明しているものを,次のア~エから二つ選びなさい ただし日時計は晴れた日に使用するものとする。( 7時刻盤に映る竹串の影の長さは1日の中では正午から夕方にかけて長くなる。 正午の時刻盤に映る竹串の影の長さは,夏至の日から秋分の日にかけて長くなる。 夏至の日と秋分の日では,日時計を利用できる時間の長さは同じである。 冬至の日は、時刻盤に竹串の影が映らない。

回答募集中 回答数: 0
理科 中学生

ここの4番が分からないので解説お願いします🙏 ちなみに答えはウです!

応用問題 5 太陽の動きの観測 太陽の動きを観測するために, 図1のように午前8時から午後4時まで,1時間ごと の太陽の位置を透明半球上に記録した。その後,図2 のように、記録した点をなめらかな線で結び,透明半 球上に太陽の動いた道筋をかいた。 図1,図2 中の点は, 透明半球の中心, 図2中の点A~D 図2 D 図 1 西 B O 南 (A 北 O P 南 図 3 7.9cm C 西 Q 12.5cm2.5cm2.5cm2.5cm2.5cm2.5cm 25cm 2.5cm 8.3cm Q は午前8時から午前11時までの点,点P,Qは,P3htom 80.m 太陽の動いた道筋の延長線と透明半球のふちの交点で、点Pは日の出の位置, 点Qは日の入りの位置を表し ている。図3は,図2の点Pと1時間ごとの太陽の位置と点Qを紙テープにうつしとり,各点の間の長さを それぞれはかった結果である。 次の問いに答えなさい。 (太陽の位置を透明半球上に記録するとき、フェルトペンの先のかげがどの位置にくるようにすればよい 全商 (香川・改) ア午前4時50分 ウ 午前5時50分 イ 午前5時10分 (3) AB, BC, CD の長さの関係から、時間ごとの太陽の見かけの動きの速さはどうなっていることがわかる か。簡単に答えなさい。全で等しい M か。簡単に答えなさい。点○とかさなるようにする。深いの (2) 観測した太陽の動きについて述べた次の文の, ( ①,② にあてはまることばや数値を答えなさい。 まない ① 地軸 ② 15 図2より, 地上からは,太陽は東から西へ動いているように見える。 これは,地球が(1)を中心 にして自転しているために起こる見かけの動きである。 また, 地球は, 1日に1回自転するため, 太陽 は1時間に約(②度ずつ動いているように見える。 観測を行った日の日の出の時刻としてもっとも適切なものを,次のア~エから選び, 記号で答えなさい。 エ午前6時10分 (ア 点と点Qの中点の位置で太陽が南中した。 観測を行った日の南中時刻としてもっとも適切なものを、次 のア~エから選び, 記号で答えなさい。 イ ア 午前11時50分 午前11時55分 ウ 午後0時5分 エ午後0時10分 189

回答募集中 回答数: 0
数学 中学生

答えは選択肢5なのですが、IVがなぜ読み取れるのかわからないです。第三四分位数で1日は確実に言えると思うのですが、他に30部屋の時があるのか読み取り方がわからないです。教えてください!

(イ) ある観光地の近くに1軒の旅館があり、この旅館の部屋数は40である。 下の図2は、この旅館に おいて,翌月の1日から30日までの30日間のそれぞれの日に,何部屋の予約が入っているか,その 予約数をまとめたものを,それぞれヒストグラムと箱ひげ図で表したものである。 ただし, ヒストグ ラムは0部屋以上5部屋未満,5部屋以上10 部屋未満などのように, 階級の幅を 5部屋にとって分 けている。 このヒストグラムと箱ひげ図から読み取れることがらを,あとのI~Vの中からすべて選んだとき の組み合わせとして最も適するものを1~6の中から1つ選び、その番号を答えなさい。 図2 ヒストグラム (日) 876543210 05 10 15 20 25 30 35 40 (部屋) 箱ひげ図 (1) 10 10 20 30 40 (部屋) A イ 予約数が35 部屋以上の日数よりも予約数が10部屋未満の日数の方が多い。 予約数の四分位範囲は16部屋である。 Ⅲ.予約数の中央値は23部屋である。 IV. 予約数が30 部屋の日数は1日である。 V. 予約数が4部屋の日は1日もない。 of 1 I, II II, IV 18 HTI, II, V この固定 3. I, III, IV 831 5. III, IV, V 6. III, V C

回答募集中 回答数: 0
1/52